Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 May 3;540(2):197-204.
doi: 10.1016/0304-4165(78)90132-0.

Specificity of the binding of trifluoperazine to the calcium-dependent activator of phosphodiesterase and to a series of other calcium-binding proteins

Specificity of the binding of trifluoperazine to the calcium-dependent activator of phosphodiesterase and to a series of other calcium-binding proteins

R M Levin et al. Biochim Biophys Acta. .

Abstract

Trifluoperazine inhibits the activation of phosphodiesterase by binding to the calcium-dependent activator. To determine further the specificity by which trifluoperazine binds to activator, we compared the binding of trifluoperazine to activator prepared from several species and tissues and to a number of other calcium-binding proteins devoid of activator activity. Trifluoperazine binds to activator prepared from human, bovine, rat and rabbit brain and from chick embryo fibroblasts. In each case, the binding of trifluoperazine to activator was qualitatively similar and related quantitatively to the ability of the preparation to activate phosphodiesterase. Of the other calcium-binding proteins examined, namely, troponin-C, S-100 protein, phospholipase A, phospholipase B and myosin light chain, only troponin-C displayed any significant calcium-specific binding of trifluoperazine. The binding to troponin-C, however, appeared to be different from the binding to activator; whereas the binding of trifluoperazine to actovator showed no cooperativity, the binding to troponin-C showed positive cooperatively. These results and earlier data showing that trifluoperazine fails to bind to a variety of other proteins, indicate that the binding of trifluoperazine to the calcium-dependent activator of phosphodiesterase is selective and suggest that this binding may explain some of the biochemical and pharmacological actions of this antipsychotic agent.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources