Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 24;400(3):352-7.
doi: 10.1016/j.bbrc.2010.08.063. Epub 2010 Aug 22.

Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris

Affiliations

Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris

Bomi Hwang et al. Biochem Biophys Res Commun. .

Abstract

Psacotheasin is a 34-mer knottin-type peptide that is derived from Psacothea hilaris larvae. In this study, the antifungal activity and mechanism(s) by which psacotheasin affects human fungal pathogens were investigated. Psacotheasin shows remarkable antifungal properties without hemolytic activity against human erythrocytes. To understand the antifungal mechanism(s) of psacotheasin in Candida albicans, flow cytometric analysis with DiBAC(4)(3) and PI was conducted. The results showed that psacotheasin depolarized and perturbed the plasma membrane of the C. albicans. Three-dimensional (3D)-flow cytometric contour-plot analysis, accompanied by decreased forward scatter (FS), which indicates cell size, confirmed that psacotheasin exerted antifungal effects via membrane permeabilization. The membrane studies, using a single GUV and FITC-dextran (FD) loaded liposomes, indicate that psacotheasin acts as a pore-forming peptide in the model membrane of C. albicans and the radius of pores were presumed to be anywhere from 2.3 to 3.3nm. Therefore, the current study suggests that the mechanism(s) of psacotheasin's antifungal properties function within the membrane.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources