Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 15;123(Pt 18):3061-70.
doi: 10.1242/jcs.066712. Epub 2010 Aug 24.

beta-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release

Affiliations

beta-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release

Pawan Sharma et al. J Cell Sci. .

Abstract

The dystrophin-glycoprotein complex (DGC) links the extracellular matrix and actin cytoskeleton. Caveolae form membrane arrays on smooth muscle cells; we investigated the mechanism for this organization. Caveolin-1 and beta-dystroglycan, the core transmembrane DGC subunit, colocalize in airway smooth muscle. Immunoprecipitation revealed the association of caveolin-1 with beta-dystroglycan. Disruption of actin filaments disordered caveolae arrays, reduced association of beta-dystroglycan and caveolin-1 to lipid rafts, and suppressed the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release. We generated novel human airway smooth muscle cell lines expressing shRNA to stably silence beta-dystroglycan expression. In these myocytes, caveolae arrays were disorganized, caveolae structural proteins caveolin-1 and PTRF/cavin were displaced, the signaling proteins PLCbeta1 and G(alphaq), which are required for receptor-mediated Ca2+ release, were absent from caveolae, and the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release, was diminished. These data reveal an interaction between caveolin-1 and beta-dystroglycan and demonstrate that this association, in concert with anchorage to the actin cytoskeleton, underpins the spatial organization and functional role of caveolae in receptor-mediated Ca2+ release, which is an essential initiator step in smooth muscle contraction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources