Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990:77 Suppl 4:14-21.
doi: 10.1159/000174688.

Lovastatin and simvastatin--inhibitors of HMG CoA reductase and cholesterol biosynthesis

Affiliations

Lovastatin and simvastatin--inhibitors of HMG CoA reductase and cholesterol biosynthesis

A W Alberts. Cardiology. 1990.

Abstract

The microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase is a key rate-controlling step early in the cholesterol biosynthetic pathway that catalyzes the conversion of HMG CoA to mevalonic acid. Since this enzyme plays a significant role in regulating cholesterol synthesis, it is a rational target for pharmacologic intervention. The first potent, specific inhibitor of HMG CoA was mevastatin (compactin, ML-236B), which was discovered in 1976 by Endo et al. [J Antibiot 1976:29:1346-1348]. Subsequently, lovastatin, a novel, more active fungal metabolite was isolated from a strain of Aspergillus terreus. Lovastatin, the first of this class of agents to be approved for clinical use, was chemically modified to form simvastatin. Simvastatin is superior to lovastatin in intrinsic inhibitory potency. Both are inactive lactone prodrugs that must be converted to their respective dihydroxy open-acid forms to elicit inhibitory activity. Pharmacologic characterization of lovastatin and simvastatin has demonstrated that these potent inhibitors of HMG CoA reductase specifically inhibit cholesterol synthesis in animal cells, as well as in vivo after oral administration of the agents. Oral administration of either lovastatin or simvastatin to dogs in the presence or absence of the bile acid sequestrant cholestyramine results in a marked, sustained lowering of plasma cholesterol. Associated with the cholesterol lowering is a decrease in urinary and plasma levels of mevalonic acid, the end product of the HMG CoA reductase reaction. The target organ for inhibitors of HMG CoA reductase is the liver, the primary site of cholesterol biosynthesis. Both lovastatin and simvastatin are preferentially extracted by this organ.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources