Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;75(4):862-84.
doi: 10.1111/j.1095-8649.2009.02335.x.

Ionoregulatory physiology of two species of African lungfishes Protopterus dolloi and Protopterus annectens

Affiliations

Ionoregulatory physiology of two species of African lungfishes Protopterus dolloi and Protopterus annectens

M Patel et al. J Fish Biol. 2009 Sep.

Abstract

Basic ionoregulatory physiology was characterized in two species of African lungfish, slender African lungfish Protopterus dolloi and West African lungfish Protopterus annectens, largely under aquatic conditions. There were no substantive differences between the two species. Plasma [Na], [Cl] and [Ca] were only 60-80% of those typical of freshwater teleosts, and plasma Ca activity was particularly low. Unidirectional Na and Cl influx rates from water were also very low, only c. 10% of teleost values, whereas unidirectional Ca influx rates were comparable with teleost rates. Protopterus spp. were fed a 3% ration of bloodworms every 48 h. The bloodworm diet provided similar amounts of Na and Ca as uptake from water, but almost no Cl. Efflux rates of Na and Cl through the urine were greater than via the faeces, whereas the opposite was true for Ca. Net ion flux measurements and ionic balance sheet calculations indicated that (1) both water and dietary uptake routes are important for Na and Ca acquisition; (2) the waterborne route predominates for Cl uptake; (3) unidirectional ion effluxes across the body surface (gills and skin) rather than urine and faeces are the major routes of loss for Na, Cl and Ca. Tissues (muscle, liver, lung, kidney, intestine and heart) and plasma ions were also examined in P. dolloi'terrestrialized' in air for up to 5 months, during which plasma ion concentrations (Na, Cl, Ca and Mg) did not change and there were only a few alterations in tissue ions, that is, increased [Na] in intestine, decreased [Cl] in kidney and increased [Ca] in liver and kidney.

PubMed Disclaimer

Publication types

LinkOut - more resources