α-Conotoxin BuIA[T5A;P6O]: a novel ligand that discriminates between α6ß4 and α6ß2 nicotinic acetylcholine receptors and blocks nicotine-stimulated norepinephrine release
- PMID: 20739611
- PMCID: PMC3229426
- DOI: 10.1096/fj.10-166272
α-Conotoxin BuIA[T5A;P6O]: a novel ligand that discriminates between α6ß4 and α6ß2 nicotinic acetylcholine receptors and blocks nicotine-stimulated norepinephrine release
Abstract
α6* (asterisk indicates the presence of additional subunits) nicotinic acetylcholine receptors (nAChRs) are broadly implicated in catecholamine-dependent disorders that involve attention, motor movement, and nicotine self-administration. Different molecular forms of α6 nAChRs mediate catecholamine release, but receptor differentiation is greatly hampered by a paucity of subtype selective ligands. α-Conotoxins are nAChR-targeted peptides used by Conus species to incapacitate prey. We hypothesized that distinct conotoxin-binding kinetics could be exploited to develop a series of selective probes to enable study of native receptor subtypes. Proline6 of α-conotoxin BuIA was found to be critical for nAChR selectivity; substitution of proline6 with 4-hydroyxproline increased the IC(50) by 2800-fold at α6/α3β2β3 but only by 6-fold at α6/α3β4 nAChRs (to 1300 and 12 nM, respectively). We used conotoxin probes together with subunit-null mice to interrogate nAChR subtypes that modulate hippocampal norepinephrine release. Release was abolished in α6-null mutant mice. α-Conotoxin BuIA[T5A;P6O] partially blocked norepinephrine release in wild-type controls but failed to block release in β4(-/-) mice. In contrast, BuIA[T5A;P6O] failed to block dopamine release in the wild-type striatum known to contain α6β2* nAChRs. BuIA[T5A;P6O] is a novel ligand for distinguishing between closely related α6* nAChRs; α6β4* nAChRs modulate norepinephrine release in hippocampus but not dopamine release in striatum.
Figures
References
-
- Gotti C., Clementi F., Fornari A., Gaimarri A., Guiducci S., Manfredi I., Moretti M., Pedrazzi P., Pucci L., Zoli M. (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem. Pharmacol. 78, 703–711 - PubMed
-
- Gotti C., Moretti M., Gaimarri A., Zanardi A., Clementi F., Zoli M. (2007) Heterogeneity and complexity of native brain nicotinic receptors. Biochem. Pharmacol. 74, 1102–1111 - PubMed
-
- Millar N. S., Gotti C. (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56, 237–246 - PubMed
-
- McGehee D. S., Role L. W. (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol. 57, 521–546 - PubMed
-
- Gotti C., Zoli M., Clementi F. (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. 27, 482–491 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
