Radical cations in aromatic hydrocarbon carcinogenesis
- PMID: 2074051
- DOI: 10.3109/10715769009109670
Radical cations in aromatic hydrocarbon carcinogenesis
Abstract
Most carcinogens, including polycyclic aromatic hydrocarbons (PAH), require metabolic activation to produce the ultimate electrophilic species that bind covalently with cellular macromolecules to trigger the cancer process. Metabolic activation of PAH can be understood in terms of two main pathways: one-electron oxidation to yield reactive intermediate radical cations and monooxygenation to produce bay-region diol epoxides. The reason we have postulated that one-electron oxidation plays an important role in the activation of PAH derives from certain common characteristics of the radical cation chemistry of the most potent carcinogenic PAH. Two main features common to these PAH are: 1) a relatively low ionization potential, which allows easy metabolic removal of one electron, and 2) charge localization in the PAH radical cation that renders this intermediate specifically and efficiently reactive toward nucleophiles. Equally important, cytochrome P-450 and mammalian peroxidases catalyze one-electron oxidation. This mechanism plays a role in the binding of PAH to DNA. Chemical, biochemical and biological evidence will be presented supporting the important role of one-electron oxidation in the activation of PAH leading to initiation of cancer.
Similar articles
-
Role of radical cations in aromatic hydrocarbon carcinogenesis.Environ Health Perspect. 1985 Dec;64:69-84. doi: 10.1289/ehp.856469. Environ Health Perspect. 1985. PMID: 3830701 Free PMC article.
-
The approach to understanding aromatic hydrocarbon carcinogenesis. The central role of radical cations in metabolic activation.Pharmacol Ther. 1992;55(2):183-99. doi: 10.1016/0163-7258(92)90015-r. Pharmacol Ther. 1992. PMID: 1289900 Review.
-
Formation of stable DNA adducts and apurinic sites upon metabolic activation of bay and fjord region polycyclic aromatic hydrocarbons in human cell cultures.Chem Res Toxicol. 2000 Jan;13(1):10-7. doi: 10.1021/tx9802724. Chem Res Toxicol. 2000. PMID: 10649961
-
Quantum chemical studies of polycyclic aromatic hydrocarbons and their metabolites: correlations to carcinogenicity.Chem Biol Interact. 1979 Jun;26(1):75-89. doi: 10.1016/0009-2797(79)90094-2. Chem Biol Interact. 1979. PMID: 466745
-
Exposure to polycyclic aromatic hydrocarbons: bulky DNA adducts and cellular responses.Exp Suppl. 2012;101:107-31. doi: 10.1007/978-3-7643-8340-4_5. Exp Suppl. 2012. PMID: 22945568 Review.
Cited by
-
Rainbow trout (Oncorhynchus mykiss) and ultra-low dose cancer studies.Comp Biochem Physiol C Toxicol Pharmacol. 2009 Mar;149(2):175-81. doi: 10.1016/j.cbpc.2008.12.002. Epub 2008 Dec 13. Comp Biochem Physiol C Toxicol Pharmacol. 2009. PMID: 19135172 Free PMC article.
-
Fetal mouse Cyp1b1 and transplacental carcinogenesis from maternal exposure to dibenzo(a,l)pyrene.Cancer Prev Res (Phila). 2008 Jul;1(2):128-34. doi: 10.1158/1940-6207.CAPR-07-0004. Epub 2008 Mar 19. Cancer Prev Res (Phila). 2008. PMID: 19138945 Free PMC article.
-
Lymphoma and lung cancer in offspring born to pregnant mice dosed with dibenzo[a,l]pyrene: the importance of in utero vs. lactational exposure.Toxicol Appl Pharmacol. 2008 Dec 15;233(3):454-8. doi: 10.1016/j.taap.2008.09.009. Epub 2008 Sep 24. Toxicol Appl Pharmacol. 2008. PMID: 18848954 Free PMC article.
-
p53 Mutagenesis by benzo[a]pyrene derived radical cations.Chem Res Toxicol. 2012 Oct 15;25(10):2117-26. doi: 10.1021/tx300201p. Epub 2012 Aug 9. Chem Res Toxicol. 2012. PMID: 22768918 Free PMC article.