Ligand-clustered "patchy" nanoparticles for modulated cellular uptake and in vivo tumor targeting
- PMID: 20740515
- PMCID: PMC3412154
- DOI: 10.1002/anie.201003445
Ligand-clustered "patchy" nanoparticles for modulated cellular uptake and in vivo tumor targeting
Abstract
Despite the evident success of using a multivalent approach to increase efficacy of targeted delivery, a clear understanding of how multiple ligands behave collectively to influence the uptake of nanoparticle cell-targeting agents has not been reached. Although when present in large quantity, multivalent ligands can increase binding avidities to cells, it is also conceivable, that the manner in which these ligands are presented to the cell may have a significant effect on uptake. Here we examine this parameter using a linear dendritic polymer construct that enabled us to pattern the surfaces of nanoparticles with variable sized ligand clusters in different spatial arrangements. We demonstrate for the first time the clear impact of folate presentation on intracellular uptake both in vitro and in vivo. The findings presented here suggest that the nature of ligand presentation on a nanoparticle surface may play an important role in drug targeting; the results suggest potential impact for other targeting moieties and provide a framework for further refinement of future multivalent targeting strategies.
Figures




Similar articles
-
The Weak Link: Optimization of the Ligand-Nanoparticle Interface To Enhance Cancer Cell Targeting by Polymer Micelles.Nano Lett. 2017 Oct 11;17(10):5995-6005. doi: 10.1021/acs.nanolett.7b02225. Epub 2017 Sep 5. Nano Lett. 2017. PMID: 28853896 Free PMC article.
-
A carbohydrate mimetic peptide modified size-shrinkable micelle nanocluster for anti-tumor targeting and penetrating drug delivery.Int J Nanomedicine. 2019 Sep 9;14:7339-7352. doi: 10.2147/IJN.S213455. eCollection 2019. Int J Nanomedicine. 2019. PMID: 31686810 Free PMC article.
-
The role of the cell cycle in the cellular uptake of folate-modified poly(L-amino acid) micelles in a cell population.Nanoscale. 2015 Dec 28;7(48):20397-404. doi: 10.1039/c5nr03850b. Nanoscale. 2015. PMID: 26463458
-
Targeting of nanoparticles in cancer: drug delivery and diagnostics.Anticancer Drugs. 2011 Nov;22(10):949-62. doi: 10.1097/CAD.0b013e32834a4554. Anticancer Drugs. 2011. PMID: 21970851 Review.
-
Active drug targeting of disease by nanoparticles functionalized with ligand to folate receptor.Curr Med Chem. 2012;19(19):3152-62. doi: 10.2174/092986712800784694. Curr Med Chem. 2012. PMID: 22612700 Review.
Cited by
-
Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy.Asian J Pharm Sci. 2019 Nov;14(6):581-594. doi: 10.1016/j.ajps.2019.04.005. Epub 2019 Jun 12. Asian J Pharm Sci. 2019. PMID: 32104485 Free PMC article. Review.
-
A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles.Sci Adv. 2020 Jul 29;6(31):eabc2148. doi: 10.1126/sciadv.abc2148. eCollection 2020 Jul. Sci Adv. 2020. PMID: 32832695 Free PMC article.
-
Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers.J Control Release. 2013 May 28;168(1):41-9. doi: 10.1016/j.jconrel.2013.02.004. Epub 2013 Feb 16. J Control Release. 2013. PMID: 23419950 Free PMC article.
-
Point-Spread Function Deformations Unlock 3D Localization Microscopy on Spherical Nanoparticles.ACS Nano. 2024 Oct 29;18(43):29832-29845. doi: 10.1021/acsnano.4c09719. Epub 2024 Oct 16. ACS Nano. 2024. PMID: 39411831 Free PMC article.
-
A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.BMC Syst Biol. 2017 Nov 25;11(1):113. doi: 10.1186/s12918-017-0491-4. BMC Syst Biol. 2017. PMID: 29178887 Free PMC article.
References
-
- Kitov PI, Sadowska JM, Mulvey G, Armstrong GD, Ling H, Pannu NS, Read RJ, Bundle DR. Nature (London) 2000;403:669. - PubMed
-
- Mourez M, Kane RS, Mogridge J, Metallo S, Deschatelets P, Sellman BR, Whitesides GM, Collier RJ. Nat. Biotechnol. 2001;19:958. - PubMed
-
- Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L. J. Med. Chem. 2006;49:6087. - PubMed
-
- Cairo CW, Gestwicki JE, Kanai M, Kiessling LL. J. Am. Chem. Soc. 2002;124:1615. - PubMed
-
- Andre S, Kaltner H, Furuike T, Nishimura SI, Gabius HJ. Bioconjugate Chemistry. 2004;15:87. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources