Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;43(2):152-63.
doi: 10.1002/lsm.20960. Epub 2010 Aug 25.

In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation

Affiliations

In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation

Gerald J Wilmink et al. Lasers Surg Med. 2011 Feb.

Abstract

Background: Terahertz (THz) radiation sources are increasingly being used in military, defense, and medical applications. However, the biological effects associated with this type of radiation are not well characterized. In this study, we evaluated the cellular and molecular response of human dermal fibroblasts exposed to THz radiation.

Methods: In vitro exposures were performed in a temperature-controlled chamber using a molecular gas THz laser (2.52 THz, 84.8 mW cm(-2), durations: 5, 10, 20, 40, or 80 minutes). Both computational and empirical dosimetric techniques were conducted using finite-difference time-domain (FDTD) modeling approaches, infrared cameras, and thermocouples. Cellular viability was assessed using conventional MTT assays. In addition, the transcriptional activation of protein and DNA sensing genes were evaluated using qPCR. Comparable analyses were also conducted for hyperthermic and genotoxic positive controls.

Results: We found that cellular temperatures increased by 3°C during all THz exposures. We also found that for each exposure duration tested, the THz and hyperthermic exposure groups exhibited equivalent levels of cell survival (≥90%) and heat shock protein expression (∼3.5-fold increases). In addition, the expression of DNA sensing and repair genes was unchanged in both groups; however, appreciable increases were observed in the genotoxic controls.

Conclusions: Human dermal fibroblasts exhibit comparable cellular and molecular effects when exposed to THz radiation and hyperthermic stress. These findings suggest that radiation at 2.52 THz generates primarily thermal effects in mammalian cells. Therefore, we conclude that THz-induced bioeffects may be accurately predicted with conventional thermal damage models.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources