Leydig neuron activity modulates heartbeat in the medicinal leech
- PMID: 2074550
- DOI: 10.1007/BF00192660
Leydig neuron activity modulates heartbeat in the medicinal leech
Abstract
1. Leydig neurons fire spontaneously at low rates (less than 4 Hz), but their activity increases with mechanical stimulation or electrical stimulation of mechanosensory neurons. These conditions also cause acceleration of bursting in heart motor neurons. 2. The firing rate of Leydig cells was found to regulate heart rate in chains of isolated ganglia. When Leydig neurons were made to fire action potentials at relatively high frequencies (ca. 5-10 Hz), however, heart motor neurons ceased bursting and were either silenced or fired erratically. 3. Firing of Leydig neurons at high rates caused bilateral heart interneurons of ganglia 3 or 4 to fire tonically rather than in their normal alternating bursts Tonic firing of these heart interneurons accounts for the prolonged barrages of ipsps recorded in heart motor neurons and the disruption of their normal cyclic activity. 4. Preventing spontaneous activity of Leydig neurons with injected currents in isolated ganglia caused deceleration of the heartbeat rhythm but did not halt oscillation. 5. Electrical stimulation of peripheral nerve roots with Leydig neuron activity suppressed in isolated ganglia caused acceleration of heart rate.
Similar articles
-
Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.J Neurosci. 2002 Dec 15;22(24):10580-92. doi: 10.1523/JNEUROSCI.22-24-10580.2002. J Neurosci. 2002. PMID: 12486150 Free PMC article.
-
Neural control of heartbeat in the leech and in some other invertebrates.Physiol Rev. 1979 Jan;59(1):101-36. doi: 10.1152/physrev.1979.59.1.101. Physiol Rev. 1979. PMID: 220645 Review.
-
Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.J Neurophysiol. 2008 Sep;100(3):1354-71. doi: 10.1152/jn.90579.2008. Epub 2008 Jun 25. J Neurophysiol. 2008. PMID: 18579654 Free PMC article.
-
Ionic conductances underlying the activity of interneurons that control heartbeat in the medicinal leech.J Neurosci. 1987 Dec;7(12):3945-52. doi: 10.1523/JNEUROSCI.07-12-03945.1987. J Neurosci. 1987. PMID: 3694258 Free PMC article.
-
Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns.J Neurobiol. 1995 Jul;27(3):390-402. doi: 10.1002/neu.480270311. J Neurobiol. 1995. PMID: 7673897 Review.
Cited by
-
Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.J Neurosci. 2002 Dec 15;22(24):10580-92. doi: 10.1523/JNEUROSCI.22-24-10580.2002. J Neurosci. 2002. PMID: 12486150 Free PMC article.
-
Centrally patterned rhythmic activity integrated by a peripheral circuit linking multiple oscillators.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Aug;198(8):567-82. doi: 10.1007/s00359-012-0730-5. Epub 2012 May 11. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012. PMID: 22576728
-
Output variability across animals and levels in a motor system.Elife. 2018 Jan 18;7:e31123. doi: 10.7554/eLife.31123. Elife. 2018. PMID: 29345614 Free PMC article.
-
The neuromuscular transform in a single segment of a segmented heart tube.J Neurophysiol. 2020 Sep 1;124(3):914-929. doi: 10.1152/jn.00640.2019. Epub 2020 Aug 5. J Neurophysiol. 2020. PMID: 32755357 Free PMC article.
-
Variation in motor output and motor performance in a centrally generated motor pattern.J Neurophysiol. 2014 Jul 1;112(1):95-109. doi: 10.1152/jn.00856.2013. Epub 2014 Apr 9. J Neurophysiol. 2014. PMID: 24717348 Free PMC article.