Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1978 Apr;4(2):71-85.

Endogenous GTP and the regulation of epinephrine stimulation of adenylate cyclase

  • PMID: 207754
Comparative Study

Endogenous GTP and the regulation of epinephrine stimulation of adenylate cyclase

R B Clark. J Cyclic Nucleotide Res. 1978 Apr.

Abstract

Epinephrine increased adenylate cyclase activity 10 to 15 fold in lysates of the cultured human astrocytoma cell line 132-1N1. GTP had little effect on adenylate cyclase activity of lysed cell preparations either with or without added epinephrine. However, the epinephrine stimulation of adenylate cyclase was essentially lost (less than 90%) when a washed nuclei-free membrane preparation of the cyclase was assayed. A 10 to 15 fold epinephrine stimulation of the membrane adenylate cyclase could be demonstrated if cytosol of GTP were added to the assay with the hormone. The criteria of anion exchange, cation exchange, gel exclusion and paper chromatography indicated that the cytosolic agents which acted synergistically with hormones were GTP and GDP. The apparent Kact's for the synergistic action of GDP and GTP were essentially identical (1.0 muM) and of all the other nucleotides examined only GDP had a potency similar to GTP. However, the effect of GDP was apparently due to its rapid conversion to GTP even in the absence of a regenerating system. With epinephrine pretreatment of the intact 132-1N1 cells there was a specific loss of epinephrine stimulation of adenylate cyclase activity. The hormone pretreatment did not alter the capacity of the cytosol from these desensitized cells to potentiate epinephrine stimulation of the cyclase. Rather, the alteration was in the particulate fraction of the lysate. The desensitization of the membranous cyclase was stable and not reversed by GTP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms