Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov;6(11):1289-96.
doi: 10.1089/aid.1990.6.1289.

Oligopeptide inhibitors of HIV-induced syncytium formation

Affiliations

Oligopeptide inhibitors of HIV-induced syncytium formation

R J Owens et al. AIDS Res Hum Retroviruses. 1990 Nov.

Abstract

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is essential for virus entry and the formation of multinucleated giant cells by cell fusion, one of the major virus-induced cytopathic effects. To study the effects of potential fusion inhibitors, a vaccinia virus recombinant expressing the envelope glycoprotein was generated and used to infect HeLa CD4+ cells. Syncytium induction was observed as early as 4 h postinfection and continued until the entire monolayer was fused. The N-terminus of the gp41 subunit of the HIV envelope protein is very hydrophobic, and appears to be involved in virus-induced membrane fusion. We synthesized several oligopeptide analogs of the N-terminal region of gp41 and determined their ability to inhibit HIV-induced cell fusion in CD4+ HeLa cells. A hexapeptide which was identical in amino acid sequence to the N-terminus of gp41 was found to completely inhibit cell fusion, whereas peptides with altered sequences showed reduced inhibitory activity. These peptides had no effect on protein synthesis, processing, or transport to the cell surface, and showed no signs of toxicity to cells even at very high concentrations. These results indicate that oligopeptides which are homologous to the fusion peptide of HIV inhibit virus-induced cytopathology, and should be evaluated further as potential antiviral agents.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources