Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 21;26(18):14680-93.
doi: 10.1021/la102666g.

Self-assembly of lamellar- and cylinder-forming diblock copolymers in planar slits: insight from dissipative particle dynamics simulations

Affiliations

Self-assembly of lamellar- and cylinder-forming diblock copolymers in planar slits: insight from dissipative particle dynamics simulations

Pavel Petrus et al. Langmuir. .

Abstract

We present a dissipative particle dynamics simulation study on nanostructure formation of symmetric and asymmetric diblock copolymers confined between planar surfaces. We consider symmetric and slightly asymmetric diblock copolymers that form lamellar nanostructures in the bulk, and highly asymmetric diblock copolymers that form cylindrical nanostructures in the bulk. The formation of the diblock copolymer nanostructures confined between the planar surfaces is investigated and characterized by varying the separation width and the strength of the interaction between the surfaces and the diblock copolymers. Both the slit width and the surface interaction strongly influence the phase diagram, especially for the asymmetric systems. For the symmetric and slightly asymmetric diblock copolymer systems, the confinement primarily affects the orientation of the lamellar domains and only marginally influences the domain morphologies. These systems form parallel lamellar phases with different number of lamellae, and perpendicular and mixed lamellar phases. In a narrow portion of the phase diagram, these systems exhibit a parallel perforated lamellar phase, where further insight into the appearance of this phase is provided through free-energy calculations. The confined highly asymmetric diblock copolymer system shows, in addition to nanostructures with parallel and perpendicular cylinders, noncylindrical structures such as parallel lamellae and parallel perforated lamellae. The formation of the various confined nanostructures is further analyzed by calculating structural characteristics such as the mean square end-to-end distance of the diblock copolymers and the nematic order parameter.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources