Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;4(2):139-49.
doi: 10.3109/17435390903276925.

An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro

Affiliations

An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro

Martin J D Clift et al. Nanotoxicology. 2010 Jun.

Abstract

The aim of this study was to investigate the ability of a series of different surface-coated quantum dots (QDs) to cause oxidative stress and affect cell signalling in J774.A1 macrophages. Organic QDs caused a significant (p < 0.001) decrease in glutathione (GSH) levels over 24 h, while COOH and NH(2) (PEG) QDs induced a significant decrease (p < 0.05) in GSH at 6 and 24 h only. J774.A1 cytosolic Ca(2+) concentration significantly increased (p < 0.01) 30 min after treatment with all QDs. Trolox was, however, able to prevent the COOH and NH(2) (PEG) QD-induced Ca(2+) signal, but not the organic QD induced effect. All QDs tested were observed to have a relatively low ability to stimulate increased expression of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha). In conclusion, QDs differ in their interactions with macrophages according to their specific surface properties.

PubMed Disclaimer

Publication types

LinkOut - more resources