Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jul;43(7):981-9.
doi: 10.1016/j.biocel.2010.08.009. Epub 2010 Aug 24.

Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect

Affiliations
Review

Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect

Aalim M Weljie et al. Int J Biochem Cell Biol. 2011 Jul.

Abstract

Hypoxia has been recognized to play a role in promoting the invasive and metastatic behaviour of cancer cells. Largely via the transcription factor, hypoxia-induced factor 1, hypoxia exerts significant effects on cellular metabolism, with numerous downstream consequences. Energetically there is a significant shift away from oxidative phosphorylation in mitochondria towards glycolysis, a state also involved in the 'Warburg effect'. The proteins involved in mediating the altered metabolic pathways seen in tumour cells thus represent new targets for potential therapeutic intervention. Hypoxia has been associated with the development of aggressive phenotypes in cancer cells, and can be accompanied by changes in carbohydrate and lipid metabolism that impact tumour cell proliferation, adhesion, and angiogenesis. Herein, we examine glycolytic and other less investigated metabolic pathways in relation to cancer and hypoxia, with a focus on emerging tools for large-scale metabolite profiling ('metabolomics'). Metabolomic technologies permit the measurement of a wide range of metabolites in an untargeted manner, however, to date, this technology has been relatively under utilized for studying cellular responses to hypoxia. We detail some of the common experimental approaches employed in metabolomics experiments, including nuclear magnetic resonance and new mass spectrometry-based methods of analysis. Selected examples of the application of these technologies to the study of metabolic alterations brought about by hypoxia are provided, particularly as they relate to energy, carbohydrate, and lipid metabolism. Finally, the potential for therapeutic targeting of metabolic processes activated by hypoxia is presented.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources