Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010:279:33-77.
doi: 10.1016/S1937-6448(10)79002-X. Epub 2010 Jan 29.

Secondary symbiosis between Paramecium and Chlorella cells

Affiliations
Review

Secondary symbiosis between Paramecium and Chlorella cells

Yuuki Kodama et al. Int Rev Cell Mol Biol. 2010.

Abstract

Each symbiotic Chlorella species of Paramecium bursaria is enclosed in a perialgal vacuole (PV) membrane derived from the host digestive vacuole (DV) membrane. Algae-free paramecia and symbiotic algae are capable of growing independently and paramecia can be reinfected experimentally by mixing them. This phenomenon provides an excellent model for studying cell-to-cell interaction and the evolution of eukaryotic cells through secondary endosymbiosis between different protists. However, the detailed algal infection process remains unclear. Using pulse labeling of the algae-free paramecia with the isolated symbiotic algae and chase method, we found four necessary cytological events for establishing endosymbiosis. (1) At about 3 min after mixing, some algae show resistance to the host lysosomal enzymes in the DVs, even if the digested ones are present. (2) At about 30 min after mixing, the alga starts to escape from the DVs as the result of the budding of the DV membrane into the cytoplasm. (3) Within 15 min after the escape, the DV membrane enclosing a single green alga differentiates to the PV membrane, which provides protection from lysosomal fusion. (4) The alga localizes at the primary lysosome-less host cell surface by affinity of the PV to unknown structures of the host. At about 24 h after mixing, the alga multiplies by cell division and establishes endosymbiosis. Infection experiments with infection-capable and infection-incapable algae indicate that the infectivity of algae is based on their ability to localize beneath the host surface after escaping from the DVs. This algal infection process differs from known infection processes of other symbiotic or parasitic organisms to their hosts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources