Functional interactions between membrane-bound transporters and membranes
- PMID: 20798065
- PMCID: PMC2936589
- DOI: 10.1073/pnas.1006109107
Functional interactions between membrane-bound transporters and membranes
Abstract
One key role of many cellular membranes is to hold a transmembrane electrochemical ion gradient that stores free energy, which is used, for example, to generate ATP or to drive transmembrane transport processes. In mitochondria and many bacteria, the gradient is maintained by proton-transport proteins that are part of the respiratory (electron-transport) chain. Even though our understanding of the structure and function of these proteins has increased significantly, very little is known about the specific role of functional protein-membrane and membrane-mediated protein-protein interactions. Here, we have investigated the effect of membrane incorporation on proton-transfer reactions within the membrane-bound proton pump cytochrome c oxidase. The results show that the membrane acts to accelerate proton transfer into the enzyme's catalytic site and indicate that the intramolecular proton pathway is wired via specific amino acid residues to the two-dimensional space defined by the membrane surface. We conclude that the membrane not only acts as a passive barrier insulating the interior of the cell from the exterior solution, but also as a component of the energy-conversion machinery.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential.Nat Commun. 2018 Aug 9;9(1):3187. doi: 10.1038/s41467-018-05615-5. Nat Commun. 2018. PMID: 30093670 Free PMC article.
-
Identification of residues critical for proton-coupled glutathione translocation in the yeast glutathione transporter, Hgt1p.Biochem J. 2017 May 16;474(11):1807-1821. doi: 10.1042/BCJ20161063. Biochem J. 2017. PMID: 28389436
-
Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.Biochemistry. 2003 Feb 18;42(6):1488-98. doi: 10.1021/bi026524o. Biochemistry. 2003. PMID: 12578361
-
Design principles of proton-pumping haem-copper oxidases.Curr Opin Struct Biol. 2006 Aug;16(4):465-72. doi: 10.1016/j.sbi.2006.06.012. Epub 2006 Jul 13. Curr Opin Struct Biol. 2006. PMID: 16842995 Review.
-
Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase.Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):710-23. doi: 10.1016/j.bbabio.2010.02.020. Epub 2010 Feb 23. Biochim Biophys Acta. 2010. PMID: 20184858 Review.
Cited by
-
Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2412-2421. doi: 10.1073/pnas.1917968117. Epub 2020 Jan 21. Proc Natl Acad Sci U S A. 2020. PMID: 31964824 Free PMC article.
-
Competing for the same space: protons and alkali ions at the interface of phospholipid bilayers.Biophys Rev. 2019 Jun;11(3):483-490. doi: 10.1007/s12551-019-00541-2. Epub 2019 May 21. Biophys Rev. 2019. PMID: 31115866 Free PMC article. Review.
-
Interfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion.PLoS One. 2018 Feb 23;13(2):e0193454. doi: 10.1371/journal.pone.0193454. eCollection 2018. PLoS One. 2018. PMID: 29474432 Free PMC article.
-
Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface.Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14461-6. doi: 10.1073/pnas.1107476108. Epub 2011 Aug 22. Proc Natl Acad Sci U S A. 2011. PMID: 21859952 Free PMC article.
-
Exploring fast proton transfer events associated with lateral proton diffusion on the surface of membranes.Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2443-2451. doi: 10.1073/pnas.1812351116. Epub 2019 Jan 24. Proc Natl Acad Sci U S A. 2019. PMID: 30679274 Free PMC article.
References
-
- Kung C. A possible unifying principle for mechanosensation. Nature. 2005;436:647–654. - PubMed
-
- Lee AG. How lipids affect the activities of integral membrane proteins. BBA-Biomembranes. 2004;1666:62–87. - PubMed
-
- Williams RJP. The multifarious couplings of energy transduction. Biochim Biophys Acta. 1978;505:1–44. - PubMed
-
- Mulkidjanian AY, Heberle J, Cherepanov DA. Protons @ interfaces: Implications for biological energy conversion. BBA-Bioenergetics. 2006;1757:913–930. - PubMed
-
- Heberle J. Proton transfer reactions across bacteriorhodopsin and along the membrane. BBA-Bioenergetics. 2000;1458:135–147. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources