Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May-Aug;5(2):61-9.

Nanostructured surfaces for biomedical applications. Part I: nanotopography

Affiliations
  • PMID: 20799175

Nanostructured surfaces for biomedical applications. Part I: nanotopography

L Draghi et al. J Appl Biomater Biomech. 2007 May-Aug.

Abstract

The natural cell environment provides a variety of chemical, topographical and mechanical stimuli that contribute in regulating cell behavior and function. If considerable effort has been traditionally dedicated to exploring the chemical side of cell regulation, it was more recently demonstrated that topographic cues might be equally important. Cell substratum interactions are particularly crucial in determining the reaction of cells to biomaterials, which was also shown to be strongly determined by topographical cues. A significant acceleration in investigating this aspect came from the availability of techniques for microstructured surfaces, and is now well known that cells can react to topographical features at their own scale (1-100 micron). Nevertheless, cells possess many nanoscaled features such as filopodia and a cytoskeleton, and the extracellular matrix (ECM) itself possess quite a few nanoscale details. Therefore, the capability of controlling the surface structure of materials in the nanoscale has offered the possibility of adding another level in the hierarchical understanding of cell/biomaterial interactions. Nanofabrication methods, mainly developed out of the semiconductor industries, are a technological driver for addressing the nanotopography related aspects of cell behavior. General concepts regarding some of the more widely utilized techniques that enable the achievement of ordered and well-defined nanoscale features for the investigation of cell reaction to topography are presented together with a few examples of the practical applications available in the literature.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources