Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul-Aug;15(4):046014.
doi: 10.1117/1.3481144.

Combined image-processing algorithms for improved optical coherence tomography of prostate nerves

Affiliations
Free article

Combined image-processing algorithms for improved optical coherence tomography of prostate nerves

Shahab Chitchian et al. J Biomed Opt. 2010 Jul-Aug.
Free article

Abstract

Cavernous nerves course along the surface of the prostate gland and are responsible for erectile function. These nerves are at risk of injury during surgical removal of a cancerous prostate gland. In this work, a combination of segmentation, denoising, and edge detection algorithms are applied to time-domain optical coherence tomography (OCT) images of rat prostate to improve identification of cavernous nerves. First, OCT images of the prostate are segmented to differentiate the cavernous nerves from the prostate gland. Then, a locally adaptive denoising algorithm using a dual-tree complex wavelet transform is applied to reduce speckle noise. Finally, edge detection is used to provide deeper imaging of the prostate gland. Combined application of these three algorithms results in improved signal-to-noise ratio, imaging depth, and automatic identification of the cavernous nerves, which may be of direct benefit for use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources