Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 4:1359:56-66.
doi: 10.1016/j.brainres.2010.08.063. Epub 2010 Aug 27.

Diffusible, membrane-bound, and extracellular matrix factors from olfactory ensheathing cells have different effects on the self-renewing and differentiating properties of neural stem cells

Affiliations

Diffusible, membrane-bound, and extracellular matrix factors from olfactory ensheathing cells have different effects on the self-renewing and differentiating properties of neural stem cells

Li Cao et al. Brain Res. .

Abstract

Transplantation of olfactory ensheathing cells (OECs) has been a promising strategy in enhancing central nervous system (CNS) regeneration. However, little is known about the effects of transplanted OECs on the self-renewal, neurogenesis, and oligodendrogenesis of neural stem cells (NSCs), which are known to play a very important role in the repair of damaged CNS tissue. In this study, we investigated the influence of diffusible, membrane-bound, and extracellular matrix factors from OECs on the self-renewal and differentiation properties of NSCs. We found that diffusible factors from cultured OECs promoted self-renewal, whereas the extracellular matrix molecules from OECs increased neurogenesis and oligodendrogenesis of NSCs. Furthermore, we demonstrated that directly coculturing OECs and NSCs inhibited not only self-renewal but also neurogenesis and oligodendrogenesis of NSCs. We propose three models for the interaction between transplanted OECs and endogenous NSCs. Our findings provide new insight into the ability of OECs to promote CNS repair and also indicate potential targets for manipulation of these cells to enhance their restorative ability.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources