Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file
- PMID: 20801868
- DOI: 10.1148/rg.307105083
Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file
Abstract
Storing and retrieving radiology cases is an important activity for education and clinical research, but this process can be time-consuming. In the process of structuring reports and images into organized teaching files, incidental pathologic conditions not pertinent to the primary teaching point can be omitted, as when a user saves images of an aortic dissection case but disregards the incidental osteoid osteoma. An alternate strategy for identifying teaching cases is text search of reports in radiology information systems (RIS), but retrieved reports are unstructured, teaching-related content is not highlighted, and patient identifying information is not removed. Furthermore, searching unstructured reports requires sophisticated retrieval methods to achieve useful results. An open-source, RadLex(®)-compatible teaching file solution called RADTF, which uses natural language processing (NLP) methods to process radiology reports, was developed to create a searchable teaching resource from the RIS and the picture archiving and communication system (PACS). The NLP system extracts and de-identifies teaching-relevant statements from full reports to generate a stand-alone database, thus converting existing RIS archives into an on-demand source of teaching material. Using RADTF, the authors generated a semantic search-enabled, Web-based radiology archive containing over 700,000 cases with millions of images. RADTF combines a compact representation of the teaching-relevant content in radiology reports and a versatile search engine with the scale of the entire RIS-PACS collection of case material.
©RSNA, 2010
Similar articles
-
Comparing image search behaviour in the ARRS GoldMiner search engine and a clinical PACS/RIS.J Biomed Inform. 2015 Aug;56:57-64. doi: 10.1016/j.jbi.2015.04.013. Epub 2015 May 19. J Biomed Inform. 2015. PMID: 26002820
-
Informatics in radiology: use of the MIRC DICOM service for clinical trials to automatically create teaching file cases from PACS.Radiographics. 2007 Jan-Feb;27(1):269-75. doi: 10.1148/rg.271065110. Radiographics. 2007. PMID: 17235013
-
An integrated approach to a teaching file linked to PACS.J Digit Imaging. 2007 Dec;20(4):402-10. doi: 10.1007/s10278-006-1045-2. J Digit Imaging. 2007. PMID: 17191104 Free PMC article.
-
MyPACS.net: a Web-based teaching file authoring tool.AJR Am J Roentgenol. 2002 Sep;179(3):579-82. doi: 10.2214/ajr.179.3.1790579. AJR Am J Roentgenol. 2002. PMID: 12185023 Review.
-
A review of content-based image retrieval systems in medical applications-clinical benefits and future directions.Int J Med Inform. 2004 Feb;73(1):1-23. doi: 10.1016/j.ijmedinf.2003.11.024. Int J Med Inform. 2004. PMID: 15036075 Review.
Cited by
-
The role of informatics in health care reform.Acad Radiol. 2012 Sep;19(9):1094-9. doi: 10.1016/j.acra.2012.05.006. Epub 2012 Jul 6. Acad Radiol. 2012. PMID: 22771052 Free PMC article.
-
Artificial intelligence for precision education in radiology.Br J Radiol. 2019 Nov;92(1103):20190389. doi: 10.1259/bjr.20190389. Epub 2019 Jul 26. Br J Radiol. 2019. PMID: 31322909 Free PMC article. Review.
-
PathBot: A Radiology-Pathology Correlation Dashboard.J Digit Imaging. 2017 Dec;30(6):681-686. doi: 10.1007/s10278-017-9969-2. J Digit Imaging. 2017. PMID: 28374195 Free PMC article.
-
[Why radiologists should be concerned with semantics].Radiologe. 2013 Aug;53(8):699-703. doi: 10.1007/s00117-013-2515-4. Radiologe. 2013. PMID: 23760620 German.
-
Automatic retrieval of bone fracture knowledge using natural language processing.J Digit Imaging. 2013 Aug;26(4):709-13. doi: 10.1007/s10278-012-9531-1. J Digit Imaging. 2013. PMID: 23053906 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources