Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score
- PMID: 20802241
- PMCID: PMC2962254
- DOI: 10.1093/aje/kwq224
Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score
Abstract
Propensity-score matching is increasingly being used to estimate the effects of treatments using observational data. In many-to-one (M:1) matching on the propensity score, M untreated subjects are matched to each treated subject using the propensity score. The authors used Monte Carlo simulations to examine the effect of the choice of M on the statistical performance of matched estimators. They considered matching 1-5 untreated subjects to each treated subject using both nearest-neighbor matching and caliper matching in 96 different scenarios. Increasing the number of untreated subjects matched to each treated subject tended to increase the bias in the estimated treatment effect; conversely, increasing the number of untreated subjects matched to each treated subject decreased the sampling variability of the estimated treatment effect. Using nearest-neighbor matching, the mean squared error of the estimated treatment effect was minimized in 67.7% of the scenarios when 1:1 matching was used. Using nearest-neighbor matching or caliper matching, the mean squared error was minimized in approximately 84% of the scenarios when, at most, 2 untreated subjects were matched to each treated subject. The authors recommend that, in most settings, researchers match either 1 or 2 untreated subjects to each treated subject when using propensity-score matching.
References
-
- Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41–55.
-
- Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc. 1984;79(387):516–524.
-
- Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat. 1985;39(1):33–38.
-
- Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Stat Med. 2006;25(12):2084–2106. - PubMed
-
- Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med. 2008;27(12):2037–2049. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources