Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Oct;31(10):1258-66.
doi: 10.1038/aps.2010.95. Epub 2010 Aug 30.

Adiponectin resistance and vascular dysfunction in the hyperlipidemic state

Affiliations
Review

Adiponectin resistance and vascular dysfunction in the hyperlipidemic state

Rong Li et al. Acta Pharmacol Sin. 2010 Oct.

Abstract

Insulin plays an important role in the stimulation of vascular nitric oxide production, with both short term (vasomotility and anti-thrombotic effects) and long term (smooth muscle cell growth and migration inhibition) benefits. Impaired vasodilatory response to insulin, the hallmark of vascular insulin resistance (IR), has important implications for circulatory pathophysiology. An association between adipokines and IR has been observed in both diabetic and nondiabetic states. Adiponectin (APN) is an insulin-sensitizing adipokine known to stimulate skeletal muscle fatty acid (FA) oxidation and reduce lipid accumulation. Recent demonstrations of potential cross-talk between APN and insulin in vascular function regulation are particularly interesting. The lipid accumulation observed after chronic high-fat (HF) diets and in the obese state may reduce vascular response to APN, a pathologic state termed as APN resistance. This review highlights the importance of insulin sensitivity and APN activity in the maintenance of endothelial function. It explores the relationships between vascular IR and APN resistance in the hyperlipidemic pathological condition, representative of the metabolic syndrome. The investigation of vascular insulin and APN resistance provides not only better understanding of vascular pathophysiology, but also an opportunity for therapeutic targeting in individuals affected by the metabolic syndrome.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Adiponectin signaling in endothelial cells.
Figure 2
Figure 2
Adiponectin resistance (AR) and hyperlipidemic vascular pathophysiology.

Similar articles

Cited by

References

    1. Ferri C, Desideri G, Baldoncini R, Bellini C, De Angelis C, Mazzocchi C, et al. Early activation of vascular endothelium in nonobese, nondiabetic essential hypertensive patients with multiple metabolic abnormalities. Diabetes. 1998;47:660–7. - PubMed
    1. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron APN.Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance J Clin Invest 1996972601–10. - PMC - PubMed
    1. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100:1230–9. - PMC - PubMed
    1. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7:947–53. - PubMed
    1. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003;278:45021–6. - PubMed

Publication types

MeSH terms