Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity
- PMID: 20805563
- PMCID: PMC2947070
- DOI: 10.1084/jem.20092712
Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity
Abstract
Systemic lupus erythematosus (SLE) is characterized by high-avidity IgG antinuclear antibodies (ANAs) that are almost certainly products of T cell-dependent immune responses. Whether critical amino acids in the third complementarity-determining region (CDR3) of the ANA originate from V(D)J recombination or somatic hypermutation (SHM) is not known. We studied a mouse model of SLE in which all somatic mutations within ANA V regions, including those in CDR3, could be unequivocally identified. Mutation reversion analyses revealed that ANA arose predominantly from nonautoreactive B cells that diversified immunoglobulin genes via SHM. The resolution afforded by this model allowed us to demonstrate that one ANA clone was generated by SHM after a V(H) gene replacement event. Mutations producing arginine substitutions were frequent and arose largely (66%) from base changes in just two codons: AGC and AGT. These codons are abundant in the repertoires of mouse and human V genes. Our findings reveal the predominant role of SHM in the development of ANA and underscore the importance of self-tolerance checkpoints at the postmutational stage of B cell differentiation.
Figures
References
-
- Chen C., Li H., Tian Q., Beardall M., Xu Y., Casanova N., Weigert M. 2006. Selection of anti-double-stranded DNA B cells in autoimmune MRL-lpr/lpr mice. J. Immunol. 176:5183–5190 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
