Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 18;5(8):e11744.
doi: 10.1371/journal.pone.0011744.

Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes

Affiliations

Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes

Lifan Luo et al. PLoS One. .

Abstract

Background: MicroRNAs (miRNAs) are short non-coding RNA molecules which are proved to be involved in mammalian spermatogenesis. Their expression and function in the porcine germ cells are not fully understood.

Methodology: We employed a miRNA microarray containing 1260 unique miRNA probes to evaluate the miRNA expression patterns between sexually immature (60-day) and mature (180-day) pig testes. One hundred and twenty nine miRNAs representing 164 reporter miRNAs were expressed differently (p<0.1). Fifty one miRNAs were significantly up-regulated and 78 miRNAs were down-regulated in mature testes. Nine of these differentially expressed miRNAs were validated using quantitative RT-PCR assay. Totally 15,919 putative miRNA-target sites were detected by using RNA22 method to align 445 NCBI pig cDNA sequences with these 129 differentially expressed miRNAs, and seven putative target genes involved in spermatogenesis including DAZL, RNF4 gene were simply confirmed by quantitative RT-PCR.

Conclusions: Overall, the results of this study indicated specific miRNAs expression in porcine testes and suggested that miRNAs had a role in regulating spermatogenesis.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Validation of the microarray results using qRT-PCR method.
The X-axis represents the miRNAs and the Y-axis shows the relative expression levels of miRNAs (-ΔCt values for qRT-PCR; Log(sample signal, 2) for microarray). The number of biological replicates is three for both assays. R represents the Pearson correlation coefficient. The significance of differences for the expression between 60-d (immature, 60-day) and 180-d (mature, 180-day) testes was calculated using two-tailed T-test. *, p≤0.05; **, p≤0.01 (left for qRT-PCR, and right for microarray).
Figure 2
Figure 2. miRNA putative target genes expression in porcine testis was identified by qRT-PCR.
The X-axis represents the specific gene and the Y-axis shows the ΔΔCt values of genes. ΔΔCt value has a negative relationship with the gene expression level, so the smaller ΔΔCt value has a higher expression level. The number of biological replicates is three. The significance of differences for the expression between 60-d (immature, 60-day) and 180-d (mature, 180-day) testes was calculated using two-tailed T-test. *, p≤0.05; **, p≤0.01.

Similar articles

Cited by

References

    1. Lee RC, Feinbaum RL, Ambros, V The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. - PubMed
    1. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the post-transcriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73:427–433. - PubMed
    1. McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol. 2007;102:306–313. - PubMed
    1. Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res. 2008;36:2690–2699. - PMC - PubMed
    1. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006;38:813–818. - PubMed

Publication types