A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates
- PMID: 20806403
- PMCID: PMC4022355
- DOI: 10.1002/sim.4016
A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates
Abstract
Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates.
Copyright © 2010 John Wiley & Sons, Ltd.
Figures


Similar articles
-
Cox regression analysis with missing covariates via nonparametric multiple imputation.Stat Methods Med Res. 2019 Jun;28(6):1676-1688. doi: 10.1177/0962280218772592. Epub 2018 May 2. Stat Methods Med Res. 2019. PMID: 29717943 Free PMC article.
-
Multiple imputation in Cox regression when there are time-varying effects of covariates.Stat Med. 2018 Nov 10;37(25):3661-3678. doi: 10.1002/sim.7842. Epub 2018 Jul 16. Stat Med. 2018. PMID: 30014575 Free PMC article.
-
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study.BMC Med Res Methodol. 2010 Jan 19;10:7. doi: 10.1186/1471-2288-10-7. BMC Med Res Methodol. 2010. PMID: 20085642 Free PMC article.
-
How are missing data in covariates handled in observational time-to-event studies in oncology? A systematic review.BMC Med Res Methodol. 2020 May 29;20(1):134. doi: 10.1186/s12874-020-01018-7. BMC Med Res Methodol. 2020. PMID: 32471366 Free PMC article.
-
Review and evaluation of imputation methods for multivariate longitudinal data with mixed-type incomplete variables.Stat Med. 2022 Dec 30;41(30):5844-5876. doi: 10.1002/sim.9592. Epub 2022 Oct 11. Stat Med. 2022. PMID: 36220138 Free PMC article. Review.
Cited by
-
3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data.J Am Med Inform Assoc. 2018 Jun 1;25(6):645-653. doi: 10.1093/jamia/ocx133. J Am Med Inform Assoc. 2018. PMID: 29202205 Free PMC article.
-
Time-varying coefficient proportional hazards model with missing covariates.Stat Med. 2013 May 30;32(12):2013-30. doi: 10.1002/sim.5652. Epub 2012 Oct 9. Stat Med. 2013. PMID: 23044762 Free PMC article.
-
Everyday Discrimination, Neighborhood Perceptions, and Incidence of Activity Limitations Among Middle-Aged and Older African Americans.J Gerontol B Psychol Sci Soc Sci. 2023 May 11;78(5):866-879. doi: 10.1093/geronb/gbad001. J Gerontol B Psychol Sci Soc Sci. 2023. PMID: 36661210 Free PMC article.
-
Best linear inverse probability weighted estimation for two-phase designs and missing covariate regression.Stat Med. 2019 Jul 10;38(15):2783-2796. doi: 10.1002/sim.8141. Epub 2019 Mar 25. Stat Med. 2019. PMID: 30908669 Free PMC article.
-
Development of a "meta-model" to address missing data, predict patient-specific cancer survival and provide a foundation for clinical decision support.J Am Med Inform Assoc. 2021 Mar 1;28(3):605-615. doi: 10.1093/jamia/ocaa254. J Am Med Inform Assoc. 2021. PMID: 33260202 Free PMC article.
References
-
- Cox DR. Regression models and life-tables (with discussion) (B).Journal of the Royal Statistical Society. 1972;34:187–220.
-
- Little RJA, Rubin DB. Statistical Analysis With Missing Data. 2nd. New York: Wiley; 2002.
-
- Rubin DB. Multiple Imputation for Nonresponse in Surveys. Wiley; New York: 1987.
-
- Robins JM, Rotnitzky A, Zhao LP. Estimation of Regression Coefficients When Some Regressors Are Not Always Observed. Journal of the American Statistical Association. 1994;89:846866.
-
- Nan B, Emond MJ, Wellner JA. Information bounds for Cox regression models with missing data. The Annals of Statistitcs. 2004;32:723–753.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources