Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes
- PMID: 20809574
- DOI: 10.1021/ja106054c
Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes
Abstract
We describe the electrochemical detection of single iridium oxide nanoparticle (IrO(x) NP) collisions on a NaBH(4)-treated Pt ultramicroelectrode (UME). We observe single NP events through the enhanced current by electrocatalytic water oxidation, when IrO(x) contacts the electrode and transiently sticks to it. The overall current transient consists of repeated current spikes that return to the background level, superimposed on a current decay, rather than the staircase response seen where an NP sticks on the UME. Here each event produces a unique current spike (or "blip"). The frequency of the spikes was directly proportional to the particle concentration, and the peak current increased with the applied potential. The observed current is very sensitive to the material and surface state of the measuring electrode; a NaBH(4)-treated Pt UME was important in obtaining reproducible results.
Similar articles
-
Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy.J Am Chem Soc. 2012 Apr 25;134(16):7102-8. doi: 10.1021/ja300894f. Epub 2012 Apr 10. J Am Chem Soc. 2012. PMID: 22452267
-
Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode.J Am Chem Soc. 2015 Feb 11;137(5):1762-5. doi: 10.1021/ja511858c. Epub 2015 Jan 30. J Am Chem Soc. 2015. PMID: 25607323
-
Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode.Chemphyschem. 2016 Jun 3;17(11):1637-41. doi: 10.1002/cphc.201600032. Epub 2016 Mar 22. Chemphyschem. 2016. PMID: 26955784
-
Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes.Langmuir. 2013 Dec 3;29(48):15100-6. doi: 10.1021/la402818g. Epub 2013 Nov 19. Langmuir. 2013. PMID: 24188022
-
On Practical Aspects of Single-Entity Electrochemical Measurements with Hot Microelectrodes.Anal Chem. 2023 Mar 14;95(10):4577-4584. doi: 10.1021/acs.analchem.2c03978. Epub 2023 Mar 2. Anal Chem. 2023. PMID: 36862018 Review.
Cited by
-
Single-Nanoparticle Electrochemistry through Immobilization and Collision.Acc Chem Res. 2016 Nov 15;49(11):2625-2631. doi: 10.1021/acs.accounts.6b00334. Epub 2016 Oct 12. Acc Chem Res. 2016. PMID: 27730817 Free PMC article.
-
Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring.Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5303-8. doi: 10.1073/pnas.1504294112. Epub 2015 Apr 13. Proc Natl Acad Sci U S A. 2015. PMID: 25870261 Free PMC article.
-
Superior Single-Entity Electrochemistry Performance of Capping Agent-Free Gold Nanoparticles Compared to Citrate-Capped Gold Nanoparticles.Nanomaterials (Basel). 2024 Aug 28;14(17):1399. doi: 10.3390/nano14171399. Nanomaterials (Basel). 2024. PMID: 39269061 Free PMC article.
-
Single Co3O4 Nanocubes Electrocatalyzing the Oxygen Evolution Reaction: Nano-Impact Insights into Intrinsic Activity and Support Effects.Int J Mol Sci. 2021 Dec 4;22(23):13137. doi: 10.3390/ijms222313137. Int J Mol Sci. 2021. PMID: 34884941 Free PMC article.
-
Single Nanotube Voltammetry: Current Fluctuations Are Due to Physical Motion of the Nanotube.J Phys Chem C Nanomater Interfaces. 2016 Mar 24;120(11):6281-6286. doi: 10.1021/acs.jpcc.6b00681. Epub 2016 Feb 18. J Phys Chem C Nanomater Interfaces. 2016. PMID: 27066159 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous