Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Sep;29(3):E3.
doi: 10.3171/2010.6.FOCUS10125.

Upregulation of transmembrane endothelial junction proteins in human cerebral cavernous malformations

Affiliations
Free article
Comparative Study

Upregulation of transmembrane endothelial junction proteins in human cerebral cavernous malformations

Jan-Karl Burkhardt et al. Neurosurg Focus. 2010 Sep.
Free article

Abstract

Object: Cerebral cavernous malformations (CCMs) are among the most prevalent cerebrovascular malformations, and endothelial cells seem to play a major role in the disease. However, the underlying mechanisms, including endothelial intercellular communication, have not yet been fully elucidated. In this article, the authors focus on the endothelial junction proteins CD31, VE-cadherin, and occludin as important factors for functional cell-cell contacts known as vascular adhesion molecules and adherence and tight junctions.

Methods: Thirteen human CCM specimens and 6 control tissue specimens were cryopreserved and examined for the presence of VE-cadherin, occludin, and CD31 by immunofluorescence staining. Protein quantification was performed by triplicate measurements using western blot analysis.

Results: Immunofluorescent analyses of the CCM sections revealed a discontinuous pattern of dilated microvessels and capillaries as well as increased expression of occludin, VE-cadherin, and CD31 in the intima and in the enclosed parenchymal tissue compared with controls. Protein quantification confirmed these findings by showing upregulation of the levels of these proteins up to 2-6 times.

Conclusions: A protocol enabling the molecular and morphological examination of the intercellular contact proteins in human CCM was validated. The abnormal and discontinuous pattern in these endothelial cell-contact proteins compared with control tissue explains the loose intercellular junctions that are considered to be one of the causes of CCM-associated bleeding or transendothelial oozing of erythrocytes. Despite the small number of specimens, this study demonstrates for the first time a quantitative analysis of endothelial junction proteins in human CCM.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms