Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2010 Sep;52(3):1164-6.
doi: 10.1002/hep.23854.

MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma

Affiliations
Comment

MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma

Tom Luedde. Hepatology. 2010 Sep.

Abstract

Recurrent chromosomal aberrations are often observed in hepatocellular carcinoma (HCC), but little is known about the functional non-coding sequences, particularly microRNAs (miRNAs), at the chromosomal breakpoints in HCC. Here we show that 22 miRNAs are often amplified or deleted in HCC. MicroRNA-151 (miR-151), a frequently amplified miRNA on 8q24.3, is correlated with intrahepatic metastasis of HCC. We further show that miR-151, which is often expressed together with its host gene FAK, encoding focal adhesion kinase, significantly increases HCC cell migration and invasion in vitro and in vivo, mainly through miR-151-5p, but not through miR-151-3p. Moreover, miR-151 exerts this function by directly targeting RhoGDIA, a putative metastasis suppressor in HCC, thus leading to the activation of Rac1, Cdc42 and Rho GTPases. In addition, miR-151 can function synergistically with FAK to enhance HCC cell motility and spreading. Thus, our findings indicate that chromosome gain of miR-151 is a crucial stimulus for tumour invasion and metastasis of HCC.

PubMed Disclaimer

Comment on

LinkOut - more resources