Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Feb;34(1):75-81.
doi: 10.1007/s10545-010-9177-4. Epub 2010 Sep 4.

Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects

Affiliations
Review

Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects

Henk J Blom et al. J Inherit Metab Dis. 2011 Feb.

Abstract

This overview addresses homocysteine and folate metabolism. Its functions and complexity are described, leading to explanations why disturbed homocysteine and folate metabolism is implicated in many different diseases, including congenital birth defects like congenital heart disease, cleft lip and palate, late pregnancy complications, different kinds of neurodegenerative and psychiatric diseases, osteoporosis and cancer. In addition, the inborn errors leading to hyperhomocysteinemia and homocystinuria are described. These extreme human hyperhomocysteinemia models provide knowledge about which part of the homocysteine and folate pathways are linked to which disease. For example, the very high risk for arterial and venous occlusive disease in patients with severe hyperhomocysteinemia irrespective of the location of the defect in remethylation or transsulphuration indicates that homocysteine itself or one of its "direct" derivatives is considered toxic for the cardiovascular system. Finally, common diseases associated with elevated homocysteine are discussed with the focus on cardiovascular disease and neural tube defects.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Schematic representation of the folate cycles and homocysteine metabolism. AdoHcy S-adenosylhomocysteine, AdoMet S-adenosylmethionine, AICAR 5-aminoimidazole-4-carboxamide ribonucleotode, SAHH S-adenosylhomocysteine hydrolase, ATP adenosine triphosphate, BHMT betaine-homocysteine methyltransferase, CBS cystathionine β-synthase, CTH cystathionine γ-lyase, DHF dihydrofolate, DHFR dihydrofolate reductase, dUMP deoxyuridine monophosphate, dTMP deoxythymidine monophosphate, FAICAR formyl-AICAR, MAT methionine-adenosyltransferase, MTHFD methylenetetrahydrofolate dehydrogenase / methenyltetrahydrofolate cyclohydrolase / formyltetrahydrofolate synthetase, MTHFR methylenetetrahydrofolate reductase, MTR methionine synthase, MTRR methionine synthase reductase, SHMT serine-hydroxymethyltransferase, THF tetrahydrofolate, TYMS thymidylate synthase
Fig. 2
Fig. 2
Schematic overview of folate uptake and transport from the intestine, via the blood, into the cell. THF tetrahydrofolate, FR-α folate receptor alpha, PCFT proton-coupled folate transporter, RFC1 reduced folate carrier, THF tetrahydrofolate, FGCP folylpoly-γ-glutamate carboxypeptidase

Similar articles

Cited by

References

    1. Afman LA, Blom HJ, Drittij MJ, Brouns MR, van Straaten HW. Inhibition of transmethylation disturbs neurulation in chick embryos. Brain Res Dev Brain Res. 2005;158:59–65. doi: 10.1016/j.devbrainres.2005.06.002. - DOI - PubMed
    1. Al-Gazali LI, Padmanabhan R, Melnyk S, et al. Abnormal folate metabolism and genetic polymorphism of the folate pathway in a child with Down syndrome and neural tube defect. Am J Med Genet. 2001;103:128–132. doi: 10.1002/ajmg.1509. - DOI - PubMed
    1. Bagley PJ, Selhub J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA. 1998;95:13217–13220. doi: 10.1073/pnas.95.22.13217. - DOI - PMC - PubMed
    1. Barber RC, Lammer EJ, Shaw GM, Greer KA, Finnell RH. The role of folate transport and metabolism in neural tube defect risk. Mol Genet Metab. 1999;66:1–9. doi: 10.1006/mgme.1998.2787. - DOI - PubMed
    1. Blom HJ. Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol. 2009;85:295–302. doi: 10.1002/bdra.20581. - DOI - PubMed