Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Dec;57(7):830-7.
doi: 10.1016/j.neuint.2010.08.022. Epub 2010 Sep 21.

Up-regulation of caveolin-1 and blood-brain barrier breakdown are attenuated by N-acetylcysteine in thiamine deficiency

Affiliations
Comparative Study

Up-regulation of caveolin-1 and blood-brain barrier breakdown are attenuated by N-acetylcysteine in thiamine deficiency

Elizabeth Beauchesne et al. Neurochem Int. 2010 Dec.

Abstract

Wernicke's encephalopathy is a cerebral metabolic disorder caused by thiamine (vitamin B1) deficiency (TD). Neuropathologic consequences of TD include region-selective neuronal cell loss and blood-brain barrier (BBB) breakdown. Caveolin-1 is involved in the regulation of tight junction proteins and BBB permeability, and is modulated by oxidative stress, a feature of vulnerable brain regions in TD. We hypothesized that TD-related oxidative stress alters BBB integrity via induction of the caveolin-1 pathway. TD was induced in C57BL6 mice by treatment with a thiamine-deficient diet and administration of the thiamine antagonist pyrithiamine, in the absence or presence of the antioxidant N-acetylcysteine (NAC). A significant and focal increase in both caveolin-1 gene and protein expression was detected in the thalamus of thiamine-deficient mice, concomitant with IgG extravasation. Reduction of oxidative stress by NAC, as shown by normalization of reduced glutathione levels and attenuation of endothelial heme oxygenase-1 and nitric oxide synthase expression, resulted in prevention of the up-regulation of caveolin-1 in TD. Normalization of caveolin-1 levels by NAC was accompanied by a reduction in BBB breakdown, indicated by decreased IgG extravasation, normalization of occludin levels and prevention of matrix metalloproteinase-9 up-regulation. These findings demonstrate a role for caveolin-1 in TD pathogenesis, and suggest that oxidative stress contributes to BBB alterations in TD via modulation of this pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources