Kernel optimization in discriminant analysis
- PMID: 20820072
- PMCID: PMC3149884
- DOI: 10.1109/TPAMI.2010.173
Kernel optimization in discriminant analysis
Abstract
Kernel mapping is one of the most used approaches to intrinsically derive nonlinear classifiers. The idea is to use a kernel function which maps the original nonlinearly separable problem to a space of intrinsically larger dimensionality where the classes are linearly separable. A major problem in the design of kernel methods is to find the kernel parameters that make the problem linear in the mapped representation. This paper derives the first criterion that specifically aims to find a kernel representation where the Bayes classifier becomes linear. We illustrate how this result can be successfully applied in several kernel discriminant analysis algorithms. Experimental results, using a large number of databases and classifiers, demonstrate the utility of the proposed approach. The paper also shows (theoretically and experimentally) that a kernel version of Subclass Discriminant Analysis yields the highest recognition rates.
Figures



Similar articles
-
Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face image.IEEE Trans Image Process. 2006 Sep;15(9):2481-92. doi: 10.1109/tip.2006.877435. IEEE Trans Image Process. 2006. PMID: 16948295
-
Bayes optimality in linear discriminant analysis.IEEE Trans Pattern Anal Mach Intell. 2008 Apr;30(4):647-57. doi: 10.1109/TPAMI.2007.70717. IEEE Trans Pattern Anal Mach Intell. 2008. PMID: 18276970
-
Kernel machine-based one-parameter regularized fisher discriminant method for face recognition.IEEE Trans Syst Man Cybern B Cybern. 2005 Aug;35(4):659-69. doi: 10.1109/tsmcb.2005.844596. IEEE Trans Syst Man Cybern B Cybern. 2005. PMID: 16128451
-
A criterion for optimizing kernel parameters in KBDA for image retrieval.IEEE Trans Syst Man Cybern B Cybern. 2005 Jun;35(3):556-62. doi: 10.1109/tsmcb.2005.846660. IEEE Trans Syst Man Cybern B Cybern. 2005. PMID: 15971923
-
A primer on learning in Bayesian networks for computational biology.PLoS Comput Biol. 2007 Aug;3(8):e129. doi: 10.1371/journal.pcbi.0030129. PLoS Comput Biol. 2007. PMID: 17784779 Free PMC article. Review. No abstract available.
Cited by
-
Low-rank and eigenface based sparse representation for face recognition.PLoS One. 2014 Oct 21;9(10):e110318. doi: 10.1371/journal.pone.0110318. eCollection 2014. PLoS One. 2014. PMID: 25334027 Free PMC article.
-
Multiobjective optimization for model selection in kernel methods in regression.IEEE Trans Neural Netw Learn Syst. 2014 Oct;25(10):1879-93. doi: 10.1109/TNNLS.2013.2297686. IEEE Trans Neural Netw Learn Syst. 2014. PMID: 25291740 Free PMC article.
-
The promises and perils of automated facial action coding in studying children's emotions.Dev Psychol. 2019 Sep;55(9):1965-1981. doi: 10.1037/dev0000728. Dev Psychol. 2019. PMID: 31464498 Free PMC article.
-
Compound facial expressions of emotion.Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):E1454-62. doi: 10.1073/pnas.1322355111. Epub 2014 Mar 31. Proc Natl Acad Sci U S A. 2014. PMID: 24706770 Free PMC article.
-
Adding Knowledge to Unsupervised Algorithms for the Recognition of Intent.Int J Comput Vis. 2021 Apr;129(4):942-959. doi: 10.1007/s11263-020-01404-0. Epub 2021 Jan 5. Int J Comput Vis. 2021. PMID: 34211258 Free PMC article.
References
-
- Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation. 2000;12(10):2835–2404. - PubMed
-
- Blake CL, Merz CJ. UCI repository of machine learning databases. University of California; Irvine: 1998. http://www.ics.uci.edu/mlearn/MLRepository.html.
-
- Bregman L. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comp Mathematics and Mathematical Physics. 1967;7:200217.
-
- Chen B, Yuan L, Liu H, Bao Z. Kernel subclass discriminant analysis. Neurocomputing. 2007
-
- Demsar J. Statistical comparisons of classifiers over multiple data sets. J Machine Learning Research. 2006;7:1–30.