Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep;2(3):035004.
doi: 10.1088/1758-5082/2/3/035004. Epub 2010 Sep 8.

Additive manufacturing for in situ repair of osteochondral defects

Affiliations

Additive manufacturing for in situ repair of osteochondral defects

Daniel L Cohen et al. Biofabrication. 2010 Sep.

Abstract

Tissue engineering holds great promise for injury repair and replacement of defective body parts. While a number of techniques exist for creating living biological constructs in vitro, none have been demonstrated for in situ repair. Using novel geometric feedback-based approaches and through development of appropriate printing-material combinations, we demonstrate the in situ repair of both chondral and osteochondral defects that mimic naturally occurring pathologies. A calf femur was mounted in a custom jig and held within a robocasting-based additive manufacturing (AM) system. Two defects were induced: one a cartilage-only representation of a grade IV chondral lesion and the other a two-material bone and cartilage fracture of the femoral condyle. Alginate hydrogel was used for the repair of cartilage; a novel formulation of demineralized bone matrix was used for bone repair. Repair prints for both defects had mean surface errors less than 0.1 mm. For the chondral defect, 42.8+/-2.6% of the surface points had errors that were within a clinically acceptable error range; however, with 1 mm path planning shift, an estimated approximately 75% of surface points could likely fall within the benchmark envelope. For the osteochondral defect, 83.6+/-2.7% of surface points had errors that were within clinically acceptable limits. In addition to implications for minimally invasive AM-based clinical treatments, these proof-of-concept prints are some of the only in situ demonstrations to-date, wherein the substrate geometry was unknown a priori. The work presented herein demonstrates in situ AM, suggests potential biomedical applications and also explores in situ-specific issues, including geometric feedback, material selection and novel path planning techniques.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources