Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;13(8):976-83.
doi: 10.1111/j.1524-4733.2010.00784.x. Epub 2010 Sep 3.

Network meta-analysis with competing risk outcomes

Affiliations
Free article

Network meta-analysis with competing risk outcomes

A E Ades et al. Value Health. 2010 Dec.
Free article

Abstract

Background: Cost-effectiveness analysis often requires information on the effectiveness of interventions on multiple outcomes, and commonly these take the form of competing risks. Nevertheless, methods for synthesis of randomized controlled trials with competing risk outcomes are limited.

Objective: The aim of this study was to develop and illustrate flexible evidence synthesis methods for trials reporting competing risk results, which allow for studies with different follow-up times, and that take account of the statistical dependencies between outcomes, regardless of the number of outcomes and treatments.

Methods: We propose a competing risk meta-analysis based on hazards, rather than probabilities, estimated in a Bayesian Markov chain Monte Carlo (MCMC) framework using WinBUGS software. Our approach builds on existing work on mixed treatment comparison (network) meta-analysis, which can be applied to any number of treatments, and any number of competing outcomes, and to data sets with varying follow-up times. We show how a fixed effect model can be estimated, and two random treatment effect models with alternative structures for between-trial variation. We suggest methods for choosing between these alternative models.

Results: We illustrate the methods by applying them to a data set involving 17 trials comparing nine antipsychotic treatments for schizophrenia including placebo, on three competing outcomes: relapse, discontinuation because of intolerable side effects, and discontinuation for other reasons.

Conclusions: Bayesian MCMC provides a flexible framework for synthesis of competing risk outcomes with multiple treatments, particularly suitable for embedding within probabilistic cost-effectiveness analysis.

PubMed Disclaimer