Understanding the photothermal conversion efficiency of gold nanocrystals
- PMID: 20827680
- DOI: 10.1002/smll.201001109
Understanding the photothermal conversion efficiency of gold nanocrystals
Abstract
Plasmon-based photothermal therapy is one of the most intriguing applications of noble metal nanostructures. The photothermal conversion efficiency is an essential parameter in practically realizing this application. The effects of the plasmon resonance wavelength, particle volume, shell coating, and assembly on the photothermal conversion efficiencies of Au nanocrystals are systematically studied by directly measuring the temperature of Au nanocrystal solutions with a thermocouple and analyzed on the basis of energy balance. The temperature of Au nanocrystal solutions reaches the maximum at ∼75 °C when the plasmon resonance wavelength of Au nanocrystals is equal to the illumination laser wavelength. For Au nanocrystals with similar shapes, the larger the nanocrystal, the smaller the photothermal conversion efficiency becomes. The photothermal conversion can also be controlled by shell coating and assembly through the change in the plasmon resonance energy of Au nanocrystals. Moreover, coating Au nanocrystals with semiconductor materials that have band gap energies smaller than the illumination laser energy can improve the photothermal conversion efficiency owing to the presence of an additional light absorption channel.
Similar articles
-
Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling.J Am Chem Soc. 2010 Apr 7;132(13):4806-14. doi: 10.1021/ja910239b. J Am Chem Soc. 2010. PMID: 20225866
-
Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.J Phys Chem B. 2006 Oct 5;110(39):19220-5. doi: 10.1021/jp062536y. J Phys Chem B. 2006. PMID: 17004772
-
Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.Acc Chem Res. 2008 Dec;41(12):1578-86. doi: 10.1021/ar7002804. Acc Chem Res. 2008. PMID: 18447366
-
Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.Ann N Y Acad Sci. 2008;1130:201-6. doi: 10.1196/annals.1430.051. Ann N Y Acad Sci. 2008. PMID: 18596349 Review.
-
Gold nanoparticles: past, present, and future.Langmuir. 2009 Dec 15;25(24):13840-51. doi: 10.1021/la9019475. Langmuir. 2009. PMID: 19572538 Review.
Cited by
-
Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types.Lasers Surg Med. 2012 Oct;44(8):675-84. doi: 10.1002/lsm.22072. Epub 2012 Aug 29. Lasers Surg Med. 2012. PMID: 22933382 Free PMC article.
-
Neural modulation with photothermally active nanomaterials.Nat Rev Bioeng. 2023 Mar;1(3):193-207. doi: 10.1038/s44222-023-00022-y. Epub 2023 Jan 31. Nat Rev Bioeng. 2023. PMID: 39221032 Free PMC article.
-
Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management.Nanomaterials (Basel). 2022 Mar 10;12(6):922. doi: 10.3390/nano12060922. Nanomaterials (Basel). 2022. PMID: 35335735 Free PMC article. Review.
-
Plasmonic nanotechnology for photothermal applications - an evaluation.Beilstein J Nanotechnol. 2023 Mar 27;14:380-419. doi: 10.3762/bjnano.14.33. eCollection 2023. Beilstein J Nanotechnol. 2023. PMID: 37025366 Free PMC article. Review.
-
Multi-Microseconds Microbubbles Induced by Nanoseconds Pulsed-Laser Heating of Gold Nano-Particles.ACS Omega. 2025 Feb 21;10(8):8398-8407. doi: 10.1021/acsomega.4c10328. eCollection 2025 Mar 4. ACS Omega. 2025. PMID: 40060848 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous