Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 1;16(21):5177-88.
doi: 10.1158/1078-0432.CCR-10-1343. Epub 2010 Sep 9.

PF-03732010: a fully human monoclonal antibody against P-cadherin with antitumor and antimetastatic activity

Affiliations

PF-03732010: a fully human monoclonal antibody against P-cadherin with antitumor and antimetastatic activity

Cathy C Zhang et al. Clin Cancer Res. .

Abstract

Purpose: P-cadherin is a membrane glycoprotein that functionally mediates tumor cell adhesion, proliferation, and invasiveness. We characterized the biological properties of PF-03732010, a human monoclonal antibody against P-cadherin, in cell-based assays and tumor models.

Experimental design: The affinity, selectivity, and cellular inhibitory activity of PF-03732010 were tested in vitro. Multiple orthotopic and metastatic tumor models were used for assessing the antitumor and antimetastatic activities of PF-03732010. Treatment-associated pharmacodynamic changes were also investigated.

Results: PF-03732010 selectively inhibits P-cadherin-mediated cell adhesion and aggregation in vitro. In the P-cadherin-overexpressing tumor models, including MDA-MB-231-CDH3, 4T1-CDH3, MDA-MB-435HAL-CDH3, HCT116, H1650, PC3M-CDH3, and DU145, PF-03732010 inhibited the growth of primary tumors and metastatic progression, as determined by bioluminescence imaging. Computed tomography imaging, H&E stain, and quantitative PCR analysis confirmed the antimetastatic activity of PF-03732010. In contrast, PF-03732010 did not show antitumor and antimetastatic efficacy in the counterpart tumor models exhibiting low P-cadherin expression. Mechanistic studies via immunofluorescence, immunohistochemical analyses, and 3'-[(18)F]fluoro-3'-deoxythymidine-positron emission tomography imaging revealed that PF-03732010 suppressed P-cadherin levels, caused degradation of membrane β-catenin, and concurrently suppressed cytoplasmic vimentin, resulting in diminished metastatic capacity. Changes in the levels of Ki67, caspase-3, and 3'-[(18)F]fluoro-3'-deoxythymidine tracer uptake also indicated antiproliferative activity and increased apoptosis in the tested xenografts.

Conclusions: These findings suggest that interrupting the P-cadherin signaling pathway may be a novel therapeutic approach for cancer therapy. PF-03732010 is presently undergoing evaluation in Phase 1 clinical trials.

PubMed Disclaimer

MeSH terms

LinkOut - more resources