Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 1;14(7):1191-202.
doi: 10.1089/ars.2010.3163. Epub 2011 Feb 5.

Macrophage migration inhibitory factor provides cardioprotection during ischemia/reperfusion by reducing oxidative stress

Affiliations

Macrophage migration inhibitory factor provides cardioprotection during ischemia/reperfusion by reducing oxidative stress

Kiyokazu Koga et al. Antioxid Redox Signal. .

Abstract

Macrophage migration inhibitory factor (MIF) is a multifunctional protein that exhibits an intrinsic thiol protein oxidoreductase activity and proinflammatory activities. In the present study to examine intracellular MIF redox function, exposure of MIF-deficient cardiac fibroblasts to oxidizing conditions resulted in a 2.3-fold increase (p < 0.001) in intracellular ROS that could be significantly reduced by adenoviral-mediated reexpression of recombinant MIF. In an animal model of myocardial injury by ischemia/reperfusion (I/R), MIF-deficient hearts exhibited higher levels of oxidative stress than did wild-type hearts, as measured by significantly higher oxidized glutathione levels (decreased GSH/GSSG ratio), increased protein oxidation, reduced aconitase activity, and increased mitochondrial injury (increased cytochrome c release). The increased myocardial oxidative stress after I/R was reflected by larger infarct size (INF) in MIF-deficient hearts versus wild-type (WT) hearts (21 ± 6% vs. 8 ± 3% INF/LV; p < 0.05). In vivo hemodynamic measurements showed that left ventricular (LV) contractile function of MIF-deficient hearts subjected to 15-min ischemia failed to recover during reperfusion compared with WT hearts (LV developed pressure and ± dP/dt; p = 0.02). These data represent the first in vivo evidence in support of a cardioprotective role of MIF in the postischemic heart by reducing oxidative stress.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources