Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;36(6):478-86.
doi: 10.1111/j.1365-2990.2010.01091.x.

Limited expression of heparan sulphate proteoglycans associated with Aβ deposits in the APPswe/PS1dE9 mouse model for Alzheimer's disease

Affiliations

Limited expression of heparan sulphate proteoglycans associated with Aβ deposits in the APPswe/PS1dE9 mouse model for Alzheimer's disease

N M Timmer et al. Neuropathol Appl Neurobiol. 2010 Oct.

Abstract

Aims: Alzheimer's disease (AD) is characterized by deposition of the amyloid beta (Aβ) peptide in brain parenchyma and vasculature. Several proteins co-deposit with Aβ, including heparan sulphate proteoglycans (HSPG). HSPG have been suggested to contribute to Aβ aggregation and deposition, and may influence plaque formation and persistence by stimulating Aβ fibrillization and by protecting Aβ against degradation. Mouse models for AD, expressing the human amyloid precursor protein (APP), produce Aβ deposits similar to humans. These models may be used to study disease pathology and to develop new therapeutic interventions. We aimed to investigate whether co-deposition of HSPG in AD brains can be replicated in the APPswe/PS1dE9 mouse model for AD and if a temporal association of HSPG with Aβ exists.

Methods: We studied the co-deposition of several HSPG and of the glycosaminoglycan side chains of HSPG in the APPswe/PS1dE9 model at different ages by immunohistochemistry.

Results: We found that, although APPswe/PS1dE9 mice did develop severe Aβ pathology with age, co-deposition of HS glycosaminoglycan chains and the various HSPG (agrin, perlecan and glypican-1) was scarce (<10-30% of the Aβ deposits were stained).

Conclusions: Our data suggest that the molecular composition of Aβ deposits in the APPswe/PS1dE9 mouse, with respect to the several HSPG investigated in this study, does not accurately reflect the human situation. The near absence of HSPG in Aβ deposits in this transgenic mouse model may, in turn, hinder the translation of preclinical intervention studies from mice to men.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources