Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;1804(12):2207-12.
doi: 10.1016/j.bbapap.2010.09.002. Epub 2010 Sep 15.

Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase: structural basis for enhanced stability

Affiliations

Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase: structural basis for enhanced stability

Yu L Elkina et al. Biochim Biophys Acta. 2010 Dec.

Abstract

Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) is bound to the fibrous sheath of the sperm flagellum through the hydrophobic N-terminal domain of the enzyme molecule. Expression of human GAPDS in E.coli cells yields inactive and insoluble protein. Presumably, the N-terminal domain prevents correct folding of the full-length recombinant enzyme. To obtain GAPDS in a soluble and active form, a recombinant enzyme lacking in 68 amino acids of the N-terminal domain (dN-GAPDS) was expressed in E.coli cells. Purified dN-GAPDS was shown to be a protein of 9.3 nm in diameter (by dynamic light scattering), which is close to the size of the muscle tetrameric glyceraldehyde-3-phosphate dehydrogenase (8.6 nm). The catalytic properties of the protein differed a little from those of the muscle glyceraldehyde-3-phoshate dehydrogenase. However, compared to muscle glyceraldehyde-3-phoshate dehydrogenase, dN-GAPDS exhibited enhanced thermostability (the transition midpoints values are 60.8 and 67.4°C, respectively) and was much more resistant towards action of guanidine hydrochloride (inactivation constants are 2.45±0.018 and 0.118 ± 0.008 min(-1), respectively). The enhanced stability of dN-GAPDS is likely to be related to some specific features of the GAPDS structure compared to that of the muscle enzyme: 1) reduced number of solvent-exposed salt bridges; 2) 2 additional buried salt bridges; and 3) 6 additional proline residues in GAPDS meeting the "proline rule". It is assumed that high stability of the sperm-specific GAPDS is of importance for the efficiency of fertilization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources