Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2010 Oct;43(4):236-40.
doi: 10.1016/j.pediatrneurol.2010.05.009.

Whole body hypothermia and oxidative stress in babies with hypoxic-ischemic brain injury

Affiliations
Randomized Controlled Trial

Whole body hypothermia and oxidative stress in babies with hypoxic-ischemic brain injury

Serafina Perrone et al. Pediatr Neurol. 2010 Oct.

Abstract

According to increasing evidence, hypothermia can significantly improve outcomes in term neonates manifesting asphyxic insult and hypoxic-ischemic encephalopathy. Oxidative stress plays a key role in hypoxic-ischemic and inflammatory brain injuries. We investigated the impact of hypothermia on oxidative stress in babies with hypoxic-ischemic encephalopathy. Term infants were randomly selected for treatment with moderate whole body hypothermia or standard care on normothermia, after perinatal asphyxia. Total hydroperoxides as biochemical markers of oxidative stress, and C-reactive protein as a marker of inflammation, were assayed in blood samples drown at 6, 12, 24, 48, and 72 postnatal hours. In both hypothermic and normothermic groups, total hydroperoxides and C-reactive protein exhibited a continuous increase in the first days after birth. Nevertheless, a tendency was evident for slower and smaller elevations of total hydroperoxides and C-reactive protein in hypothermic compared with normothermic infants. A significant correlation was observed between total hydroperoxides and C-reactive protein in all patients, indicating an association between inflammation and oxidative stress during asphyxia. The slower increase and lower peaks of total hydroperoxides in the hypothermic group support the hypothesis that postasphyxic oxidative stress may be reduced by hypothermia.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources