Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Sep 16:9:258.
doi: 10.1186/1475-2875-9-258.

CPP-ZFN: a potential DNA-targeting anti-malarial drug

Affiliations
Review

CPP-ZFN: a potential DNA-targeting anti-malarial drug

Vikrant Nain et al. Malar J. .

Abstract

Background: Multidrug-resistant Plasmodium is of major concern today. Effective vaccines or successful applications of RNAi-based strategies for the treatment of malaria are currently unavailable. An unexplored area in the field of malaria research is the development of DNA-targeting drugs that can specifically interact with parasitic DNA and introduce deleterious changes, leading to loss of vital genome function and parasite death.

Presentation of the hypothesis: Advances in the development of zinc finger nuclease (ZFN) with engineered DNA recognition domains allow us to design and develop nuclease of high target sequence specificity with a mega recognition site that typically occurs only once in the genome. Moreover, cell-penetrating peptides (CPP) can cross the cell plasma membrane and deliver conjugated protein, nucleic acid, or any other cargo to the cytoplasm, nucleus, or mitochondria. This article proposes that a drug from the combination of the CPP and ZFN systems can effectively enter the intracellular parasite, introduce deleterious changes in its genome, and eliminate the parasite from the infected cells.

Testing the hypothesis: Availability of a DNA-binding motif for more than 45 triplets and its modular nature, with freedom to change number of fingers in a ZFN, makes development of customized ZFN against diverse target DNA sequence of any gene feasible. Since the Plasmodium genome is highly AT rich, there is considerable sequence site diversity even for the structurally and functionally conserved enzymes between Plasmodium and humans. CPP can be used to deliver ZFN to the intracellular nucleus of the parasite. Signal-peptide-based heterologous protein translocation to Plasmodium-infected RBCs (iRBCs) and different Plasmodium organelles have been achieved. With successful fusion of CPP with mitochondrial- and nuclear-targeting peptides, fusion of CPP with 1 more Plasmodium cell membrane translocation peptide seems achievable.

Implications of the hypothesis: Targeting of the Plasmodium genome using ZFN has great potential for the development of anti-malarial drugs. It allows the development of a single drug against all malarial infections, including multidrug-resistant strains. Availability of multiple ZFN target sites in a single gene will provide alternative drug target sites to combat the development of resistance in the future.

PubMed Disclaimer

Figures

Figure 1
Figure 1
CPP-ZFN. A. Plasmodium-targeting peptide having signal peptides for infected RBC penetration, merozoite import, and organelle targeting, conjugated with Plasmodium specific zinc finger nuclease. B. It is hypothesized that the Plasmodium-targeting peptide will cross the membrane barriers of RBC and Plasmodium, and ZFN will introduce a double-strand break in the vital gene of the Plasmodium genome (a, b), leading to loss of gene function (c) and finally parasite death.

Similar articles

Cited by

References

    1. Phillips RS. Current status of malaria and potential for control. Clin Microbiol Rev. 2001;14:208–226. doi: 10.1128/CMR.14.1.208-226.2001. - DOI - PMC - PubMed
    1. Vitoria M, Granich R, Gilks CF, Gunneberg C, Hosseini M, Were W, Raviglione M, De Cock KM. The global fight against HIV/AIDS, tuberculosis, and malaria: current status and future perspectives. Am J Clin Pathol. 2009;131:844–848. doi: 10.1309/AJCP5XHDB1PNAEYT. - DOI - PubMed
    1. Prugnolle F, Durand P, Neel C, Ollomo B, Ayala FJ, Arnathau C, Etienne L, Mpoudi-Ngole E, Nkoghe D, Leroy E, Delaporte E, Peeters M, Renaud F. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc Natl Acad Sci USA. 2010;107:1458–1463. doi: 10.1073/pnas.0914440107. - DOI - PMC - PubMed
    1. Jeffares DC, Pain A, Berry A, Cox AV, Stalker J, Ingle CE, Thomas A, Quail MA, Siebenthall K, Uhlemann AC, Kyes S, Krishna S, Newbold C, Dermitzakis ET, Berriman M. Genome variation and evolution of the malaria parasite Plasmodium falciparum. Nat Genet. 2007;39:120–125. doi: 10.1038/ng1931. - DOI - PMC - PubMed
    1. Escalante AA, Smith DL, Kim Y. The dynamics of mutations associated with anti-malarial drug resistance in Plasmodium falciparum. Trends Parasitol. 2009;25:557–563. doi: 10.1016/j.pt.2009.09.008. - DOI - PMC - PubMed