Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 15;352(2):456-64.
doi: 10.1016/j.jcis.2010.08.058. Epub 2010 Sep 17.

Physicochemical studies on the interaction of serum albumin with pulmonary surfactant extract in films and bulk bilayer phase

Affiliations

Physicochemical studies on the interaction of serum albumin with pulmonary surfactant extract in films and bulk bilayer phase

Kaushik Nag et al. J Colloid Interface Sci. .

Abstract

Functionality, structure and composition of the adsorbed films of bovine lipid extract surfactant (BLES), in the absence and presence of bovine serum albumin (BSA), at the air-buffer interface was characterized through surface tension, atomic force microscopy and time of flight secondary ion mass spectrometric methods. Gel and fluid domains of BLES films were found to be altered significantly in the presence of BSA. Differential scanning calorimetric studies on BLES dispersions in presence of BSA revealed that the perturbations of the lipid bilayer structures were significant only at higher amount of BSA. FTIR studies on the BLES dispersions in buffer solution revealed that BSA could affect the lipid head-group hydrations in bilayer as well as the methylene and methyl vibration modes of fatty acyl chains of the phospholipids present in BLES. Serum albumin could perturb the film structure at pathophysiological concentration while higher amount of BSA was required in perturbing the bilayer structures. The studies suggest a connected perturbed bilayer to monolayer transition model for surfactant inactivation at the alveolar-air interface in dysfunctional surfactants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources