Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Feb-Mar;46(2-3):164-9.
doi: 10.1016/j.exger.2010.08.034. Epub 2010 Sep 16.

Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging

Affiliations
Review

Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging

Bernd Moosmann. Exp Gerontol. 2011 Feb-Mar.

Abstract

The identification of longevity-related structural adaptations in biological macromolecules may yield relevant insights into the molecular mechanisms of aging. In screening fully sequenced animal proteomes for signals associated with longevity, it was found that cysteine depletion in respiratory chain complexes was the by far strongest predictor on the amino acid usage level to co-vary with lifespan. This association was though restricted to aerobic animals, whereas anaerobic animals showed variable cysteine accumulation. By contrast, methionine accumulation, a prominent feature of mitochondrially encoded proteins affording competitive antioxidant protection, was not predictive of longevity, but rather paralleled aerobic metabolic capacity. Hence, the easily oxidized sulfur-containing amino acids cysteine (a thiol) and methionine (a thioether) show doubly diametrical behaviour in two central paradigms of respiratory oxidative stress. From this comparison, it is concluded that only the one-electron oxidation of thiols to thiyl radicals contributes to aging, whereas other forms of sulfur oxidation, especially even-electron oxidation of both thiols and thioethers, are less critically involved, presumably as their consequences may be much more easily repaired. Thiyl radicals may yet act as chain-transfer agents to entail an irreversible intramembrane cross-linking ("plastination") of some of the a priori most hydrophobic and insoluble proteins known, the respiratory chain complexes.

PubMed Disclaimer

Publication types

LinkOut - more resources