Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;36(10):1633-7.
doi: 10.1016/j.joen.2010.05.013. Epub 2010 Jul 15.

Hypoxia enhances the angiogenic potential of human dental pulp cells

Affiliations

Hypoxia enhances the angiogenic potential of human dental pulp cells

Andreza M F Aranha et al. J Endod. 2010 Oct.

Abstract

Introduction: Trauma can result in the severing of the dental pulp vessels, leading to hypoxia and ultimately to pulp necrosis. Improved understanding of mechanisms underlying the response of dental pulp cells to hypoxic conditions might lead to better therapeutic alternatives for patients with dental trauma. The purpose of this study was to evaluate the effect of hypoxia on the angiogenic response mediated by human dental pulp stem cells (DPSCs) and human dental pulp fibroblasts (HDPFs).

Methods: DPSCs and HDPFs were exposed to experimental hypoxic conditions. Hypoxia-inducible transcription factor-1alpha (HIF-1alpha) was evaluated by Western blot and immunocytochemistry, whereas vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) expression was evaluated by enzyme-linked immunosorbent assay. YC-1, an inhibitor of HIF-1alpha, was used to evaluate the functional effect of this transcriptional factor on hypoxia-induced VEGF expression. Conditioned medium from hypoxic and normoxic pulp cells was used to stimulate human dermal microvascular endothelial cells (HDMECs). HDMEC proliferation was measured by WST-1 assay, and angiogenic potential was evaluated by a capillary sprouting assay in 3-dimensional collagen matrices.

Results: Hypoxia enhanced HIF-1alpha and VEGF expression in DPSCs and HDPFs. In contrast, hypoxia did not induce bFGF expression in pulp cells. YC-1 partially inhibited hypoxia-induced HIF-1alpha and VEGF in these cells. The growth factor milieu of hypoxic HDPFs (but not hypoxic DPSCs) induced endothelial cell proliferation and sprouting as compared with medium from normoxic cells.

Conclusions: Collectively, these data demonstrate that hypoxia induces complex and cell type-specific pro-angiogenic responses and suggest that VEGF (but not bFGF) participates in the revascularization of hypoxic dental pulps.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources