Neuromelanin inhibits CXCL10 expression in human astroglial cells
- PMID: 20851166
- PMCID: PMC2987750
- DOI: 10.1016/j.neulet.2010.09.042
Neuromelanin inhibits CXCL10 expression in human astroglial cells
Abstract
Increasing evidence indicates neuroinflammation is instrumental in the pathogenesis of Parkinson's disease (PD). In PD, there is selective degeneration of neuromelanin (NM)-containing dopamine neurons. Neuromelanin is predominantly cytoprotective within dopaminergic neurons, whereas, NM released from damaged neurons activates microglia. However, the effects of NM on astroglial cells remain largely unknown. Astroglia are essential to neuronal homeostasis and responsive to injury, in part, through secretion of chemokines, including interferon γ inducible protein-10 (CXCL10). Thus, we used an in vitro approach to identify the effects of NM on TNFα-induced CXCL10 expression in human astroglial cells. TNFα-induced CXCL10 expression was inhibited in NM exposed cells. Additionally, TNFα-induced NF-кB activation was inhibited by NM. Given that CXCL10 expression is NF-кB-dependent in human astroglial cells, these findings suggest that NM may inhibit CXCL10 expression, in part, through an NF-кB-dependent mechanism. While the in vivo consequences of NM mediated effects on astroglial CXCL10 expression remain to be fully elucidated, insights obtained in this study further our understanding of the effects of NM on inflammatory signaling in human astroglial cells.
Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Figures



References
-
- Agrawal L, Louboutin JP, Marusich E, Reyes BA, Van Bockstaele EJ, Strayer DS. Dopaminergic neurotoxicity of HIV-1 gp120: reactive oxygen species as signaling intermediates. Brain Res. 2010;1306:116–130. - PubMed
-
- Aoki E, Yano R, Yokoyama H, Kato H, Araki T. Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol. 2009;86:57–64. - PubMed
-
- Banati RB, Daniel SE, Blunt SB. Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease. Mov Disord. 1998;13:221–227. - PubMed
-
- Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, Sabbagh MN, Adler CH. Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol. 2007;114:419–424. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources