Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Feb;24(1):92-9.
doi: 10.1016/j.pupt.2010.09.004. Epub 2010 Sep 17.

Sulfur mustard-induced pulmonary injury: therapeutic approaches to mitigating toxicity

Affiliations
Review

Sulfur mustard-induced pulmonary injury: therapeutic approaches to mitigating toxicity

Barry Weinberger et al. Pulm Pharmacol Ther. 2011 Feb.

Abstract

Sulfur mustard (SM) is highly toxic to the lung inducing both acute and chronic effects including upper and lower obstructive disease, airway inflammation, and acute respiratory distress syndrome, and with time, tracheobronchial stenosis, bronchitis, and bronchiolitis obliterans. Thus it is essential to identify effective strategies to mitigate the toxicity of SM and related vesicants. Studies in animals and in cell culture models have identified key mechanistic pathways mediating their toxicity, which may be relevant targets for the development of countermeasures. For example, following SM poisoning, DNA damage, apoptosis, and autophagy are observed in the lung, along with increased expression of activated caspases and DNA repair enzymes, biochemical markers of these activities. This is associated with inflammatory cell accumulation in the respiratory tract and increased expression of tumor necrosis factor-α and other proinflammatory cytokines, as well as reactive oxygen and nitrogen species. Matrix metalloproteinases are also upregulated in the lung after SM exposure, which are thought to contribute to the detachment of epithelial cells from basement membranes and disruption of the pulmonary epithelial barrier. Findings that production of inflammatory mediators correlates directly with altered lung function suggests that they play a key role in toxicity. In this regard, specific therapeutic interventions currently under investigation include anti-inflammatory agents (e.g., steroids), antioxidants (e.g., tocopherols, melatonin, N-acetylcysteine, nitric oxide synthase inhibitors), protease inhibitors (e.g., doxycycline, aprotinin, ilomastat), surfactant replacement, and bronchodilators. Effective treatments may depend on the extent of lung injury and require a multi-faceted pharmacological approach.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Dacre JC, Goldman M. Toxicology and pharmacology of the chemical warfare agent sulfur mustard. Pharmacol Rev. 1996;48:289–326. - PubMed
    1. Kehe K, Thiermann H, Balszuweit F, Eyer F, Steinritz D, Zilker T. Acute effects of sulfur mustard injury--Munich experiences. Toxicology. 2009;263:3–8. - PubMed
    1. Khateri S, Ghanei M, Keshavarz S, Soroush M, Haines D. Incidence of lung, eye, and skin lesions as late complications in 34,000 Iranians with wartime exposure to mustard agent. J Occup Environ Med. 2003;45:1136–43. - PubMed
    1. Kehe K, Balszuweit F, Emmler J, Kreppel H, Jochum M, Thiermann H. Sulfur mustard research-strategies for the development of improved medical therapy. Eplasty. 2008;8:e32. - PMC - PubMed
    1. Kehe K, Szinicz L. Medical aspects of sulphur mustard poisoning. Toxicology. 2005;214:198–209. - PubMed

Publication types