Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Dec;192(12):1005-18.
doi: 10.1007/s00203-010-0629-x. Epub 2010 Sep 18.

Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures

Affiliations
Comparative Study

Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures

Nadia C S Mykytczuk et al. Arch Microbiol. 2010 Dec.

Abstract

Psychrotrophic strains of Acidithiobacillus ferrooxidans have an important role in metal leaching and acid mine drainage (AMD) production in colder mining environments. We investigated cytoplasmic membrane fluidity and fatty acid alterations in response to low temperatures (5 and 15°C). Significant differences in membrane fluidity, measured by polarization (P) of 1,6-diphenyl-1,3,5-hexatriene (DPH), were found where the psychrotrophic strains had a significantly more rigid membrane (P range = 0.41-0.45) and lower transition temperature midpoints (T (m) = 2.0°C) and broader transition range than the mesophilic strains (P range = 0.38-0.39; T (m) = 2.0-18°C) at cold temperatures. Membrane remodeling was evident in all strains with a common trend of increased unsaturated fatty acid component in response to lower growth temperatures. In psychrotrophic strains, decreases in 12:0 fatty acids distinguished the 5°C fatty acid profiles from those of the mesophilic strains that showed decreases in 16:0, 17:0, and cyclo-19:0 fatty acids. These changes were also correlated with the observed changes in membrane fluidity (R (2) = 63-97%). Psychrotrophic strains employ distinctive modulation of cytoplasmic membrane fluidity with uncommon membrane phase changes as part of their adaptation to the extreme AMD environment in colder climates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources