Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;26(5):396-404.
doi: 10.1055/s-0030-1265019. Epub 2010 Sep 17.

Septal cartilage tissue engineering: new horizons

Affiliations

Septal cartilage tissue engineering: new horizons

Jacqueline J Greene et al. Facial Plast Surg. 2010 Oct.

Abstract

Cartilage tissue engineering is a dynamically changing field that has the potential to address some of the tissue repair challenges seen in nasal and craniofacial reconstructive surgeries. The scope of the problem includes limited autologous tissue availability, donor site morbidity associated with the harvesting of these tissue grafts, and the risk of an immune reaction to allogenic or synthetic implants that might be used as alternatives. Current tissue engineering strategies involve harvesting a small biopsy specimen from a patient and then isolating chondrocytes through enzymatic digestion of the extracellular matrix. These isolated chondrocytes can be expanded in monolayer and reseeded into a three-dimensional scaffold that could potentially be used as autologous surgical grafts. Using cell-expansion techniques, it would be feasible to generate abundant amounts of cartilage in defined shapes and sizes. The ideal tissue-engineered cartilage would resemble native tissue in terms of its biochemical, structural, and metabolic properties so that it could restore stability, function, and contour to the damaged or defective facial region. In this article, emerging technology and major challenges are described to highlight recent advances and overall trends within septal cartilage tissue engineering.

PubMed Disclaimer

Publication types