Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;86(10):829-41.
doi: 10.3109/09553002.2010.486019.

Altered mitochondrial function and genome frequency post exposure to γ-radiation and bystander factors

Affiliations

Altered mitochondrial function and genome frequency post exposure to γ-radiation and bystander factors

Sharon Nugent et al. Int J Radiat Biol. 2010 Oct.

Abstract

Purpose: To further evaluate irregular mitochondrial function and mitochondrial genome damage induced by direct γ-irradiation and bystander factors in human keratinocyte (HPV-G) epithelial cells and hamster ovarian fibroblast (CHO-K1) cells. This is as a follow-up to our recent reports of γ-irradiation-induced loss of mitochondrial function and mitochondrial DNA (mtDNA) damage.

Materials and methods: Mitochondrial function was evaluated post direct radiation and irradiated cell conditioned medium (ICCM) by determining: Activity of the individual complexes of oxidative phosphorylation (OxPhos); mtDNA-encoded protein synthesis; and mitochondrial genome frequency and mtDNA damage.

Results: Mitochondria show a loss of OxPhos enzyme function as early as 4 h post treatment with recovery observed 12-96 h in some but not all complexes demonstrating a non-uniform sensitivity to γ-radiation. We also identified irregular mtDNA-directed protein synthesis. Long range Polymerase Chain Reaction (PCR) analysis identified mitochondrial genome damage and real-time PCR identified increases in mitochondrial genome frequency.

Conclusions: The study reaffirms the sensitive nature of mitochondria to both low-level direct radiation exposure and radiation-induced bystander factor mediated damage. Furthermore, we report for the first time, the loss of function in the enzymes of OxPhos post exposure to bystander factors and identify altered mtDNA-directed protein synthesis post both direct radiation and bystander factors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources