Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2010 Sep 13;5(9):e12598.
doi: 10.1371/journal.pone.0012598.

Estimating the impact of plasma HIV-1 RNA reductions on heterosexual HIV-1 transmission risk

Collaborators, Affiliations
Randomized Controlled Trial

Estimating the impact of plasma HIV-1 RNA reductions on heterosexual HIV-1 transmission risk

Jairam R Lingappa et al. PLoS One. .

Abstract

Background: The risk of sexual transmission of HIV-1 is strongly associated with the level of HIV-1 RNA in plasma making reduction in HIV-1 plasma levels an important target for HIV-1 prevention interventions. A quantitative understanding of the relationship of plasma HIV-1 RNA and HIV-1 transmission risk could help predict the impact of candidate HIV-1 prevention interventions that operate by reducing plasma HIV-1 levels, such as antiretroviral therapy (ART), therapeutic vaccines, and other non-ART interventions.

Methodology/principal findings: We use prospective data collected from 2004 to 2008 in East and Southern African HIV-1 serodiscordant couples to model the relationship of plasma HIV-1 RNA levels and heterosexual transmission risk with confirmation of HIV-1 transmission events by HIV-1 sequencing. The model is based on follow-up of 3381 HIV-1 serodiscordant couples over 5017 person-years encompassing 108 genetically-linked HIV-1 transmission events. HIV-1 transmission risk was 2.27 per 100 person-years with a log-linear relationship to log(10) plasma HIV-1 RNA. The model predicts that a decrease in average plasma HIV-1 RNA of 0.74 log(10) copies/mL (95% CI 0.60 to 0.97) reduces heterosexual transmission risk by 50%, regardless of the average starting plasma HIV-1 level in the population and independent of other HIV-1-related population characteristics. In a simulated population with a similar plasma HIV-1 RNA distribution the model estimates that 90% of overall HIV-1 infections averted by a 0.74 copies/mL reduction in plasma HIV-1 RNA could be achieved by targeting this reduction to the 58% of the cohort with plasma HIV-1 levels ≥4 log(10) copies/mL.

Conclusions/significance: This log-linear model of plasma HIV-1 levels and risk of sexual HIV-1 transmission may help estimate the impact on HIV-1 transmission and infections averted from candidate interventions that reduce plasma HIV-1 RNA levels.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: CC has received research grant support from GlaxoSmithKline (GSK), which did not include salary support, and has served on an advisory board for GSK. AW has received grant support from Astellas, GSK, and Antigenics; she has been a consultant for Astellas and AiCuris. LC is a consultant for AiCuris and GenPhar. He is the head of the Scientific Advisory Board of Immune Design and receives financial remuneration for this, including equity shares that are <1% ownership.

Figures

Figure 1
Figure 1. The left y-axis is scaled so that a RR of 1 corresponds to the observed overall risk of transmission in the cohort (2.27% per person-year) at the median (log) viral load.
The model assumes a linear relationship between log risk of HIV-1 transmission and log10 plasma HIV-1 RNA level with the solid line as the model-predicted risk of transmission and dashed lines are 95% point-wise confidence intervals (p<0.0001). The numbers on the x-axis for the graph (plasma HIV-1 RNA) also indicate the range of plasma HIV-1 RNA values for each column of the table. The observed data (number of HIV-1 transmission events, person-years of follow-up, calculated HIV-1 incidence and 95% confidence interval [CI]) and model data (study population distribution of plasma HIV-1 RNA levels and proportion of transmissions) by level of plasma HIV-1 RNA are provided below the graph. The 0.5% of the population with plasma HIV-1 RNA level <2 log10 copies/ml and no observed transmissions are not included in this graph.

Similar articles

Cited by

References

    1. Fideli US, Allen SA, Musonda R, Trask S, Hahn BH, et al. Virologic and immunologic determinants of heterosexual transmission of human immunodeficiency virus type 1 in Africa. AIDS Res Hum Retroviruses. 2001;17:901–910. - PMC - PubMed
    1. Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med. 2000;342:921–929. - PubMed
    1. Cohen MS, Hellmann N, Levy JA, DeCock K, Lange J. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Invest. 2008;118:1244–1254. - PMC - PubMed
    1. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet. 2009;373:48–57. - PubMed
    1. Gurunathan S, Habib RE, Baglyos L, Meric C, Plotkin S, et al. Use of predictive markers of HIV disease progression in vaccine trials. Vaccine. 2009;27:1997–2015. - PubMed

Publication types

MeSH terms